Publications by authors named "Hywel T P Williams"

Biological networks vary widely in their architecture and functional properties. Branching networks are good for transportation efficiency, while networks including loops offer good resistance to damage, and examples of these two topologies are found in leaf venation networks. The first plants with reticulate (loopy) leaf venation evolved in the Pennsylvanian of the Carboniferous, but the responses of different venation network architectures from this time period to damage are currently largely unknown.

View Article and Find Full Text PDF

Researchers commonly perform sentiment analysis on large collections of short texts like tweets, Reddit posts or newspaper headlines that are all focused on a specific topic, theme or event. Usually, general-purpose sentiment analysis methods are used. These perform well on average but miss the variation in meaning that happens across different contexts, for example, the word "active" has a very different intention and valence in the phrase "active lifestyle" versus "active volcano".

View Article and Find Full Text PDF

Question and answer (Q&A) websites are a medium where people can communicate and help each other. Stack Overflow is one of the most popular Q&A websites about programming, where millions of developers seek help or provide valuable assistance. Activity on the Stack Overflow website is moderated by the user community, utilizing a voting system to promote high quality content.

View Article and Find Full Text PDF

Heatwaves cause thousands of deaths every year, yet the social impacts of heat are poorly measured. Temperature alone is not sufficient to measure impacts and "heatwaves" are defined differently in different cities/countries. This study used data from the microblogging platform Twitter to detect different scales of response and varying attitudes to heatwaves within the United Kingdom (UK), the United States of America (US) and Australia.

View Article and Find Full Text PDF

Exposure to media content is an important component of opinion formation around climate change. Online social media such as Twitter, the focus of this study, provide an avenue to study public engagement and digital media dissemination related to climate change. Sharing a link to an online article is an indicator of media engagement.

View Article and Find Full Text PDF

People often talk about the weather on social media, using different vocabulary to describe different conditions. Here we combine a large collection of wind-related Twitter posts (tweets) and UK Met Office wind speed observations to explore the relationship between tweet volume, tweet language and wind speeds in the UK. We find that wind speeds are experienced subjectively relative to the local baseline, so that the same absolute wind speed is reported as stronger or weaker depending on the typical weather conditions in the local area.

View Article and Find Full Text PDF

Global sea-level rise (SLR) is projected to increase water depths above coral reefs. Although the impacts of climate disturbance events on coral cover and three-dimensional complexity are well documented, knowledge of how higher sea levels will influence future reef habitat extent and bioconstruction is limited. Here, we use 31 reef cores, coupled with detailed benthic ecological data, from turbid reefs on the central Great Barrier Reef, Australia, to model broad-scale changes in reef habitat following adjustments to reef geomorphology under different SLR scenarios.

View Article and Find Full Text PDF

Student engagement is an important factor for learning outcomes in higher education. Engagement with learning at campus-based higher education institutions is difficult to quantify due to the variety of forms that engagement might take (e.g.

View Article and Find Full Text PDF

Twitter has become an important platform for geo-spatial analyses, providing high-volume spatial data on a wide variety of social processes. Understanding the relationship between population density and Twitter activity is therefore of key importance. This study reports a systematic relationship between population density and Twitter use.

View Article and Find Full Text PDF

Given the centrality of regions in social movements, politics and public administration, here we aim to quantitatively study regional identity, cross-region communication and sentiment. This paper presents a new methodology to study social interaction within and between social-geographic regions, and then applies the methodology to a case study of England and Wales. We use a social network, built from geo-located Twitter data, to identify contiguous geographical regions with a shared social identity and then investigate patterns of communication within and between them.

View Article and Find Full Text PDF

Allergic rhinitis (hayfever) affects a large proportion of the population in the United Kingdom. Although relatively easily treated with medication, symptoms nonetheless have a substantial adverse effect on wellbeing during the summer pollen season. Provision of accurate pollen forecasts can help sufferers to manage their condition and minimise adverse effects.

View Article and Find Full Text PDF

A long-standing objection to the Gaia hypothesis has been a perceived lack of plausible mechanisms by which life on Earth could come to regulate its abiotic environment. A null hypothesis is survival by pure chance, by which any appearance of regulation on Earth is illusory and the persistence of life simply reflects the weak anthropic principle - it must have occurred for intelligent observers to ask the question. Recent work has proposed that persistence alone increases the chance that a biosphere will acquire further persistence-enhancing properties.

View Article and Find Full Text PDF

Recently postulated mechanisms and models can help explain the enduring 'Gaia' puzzle of environmental regulation mediated by life. Natural selection can produce nutrient recycling at local scales and regulation of heterogeneous environmental variables at ecosystem scales. However, global-scale environmental regulation involves a temporal and spatial decoupling of effects from actors that makes conventional evolutionary explanations problematic.

View Article and Find Full Text PDF

"Social sensing" is a form of crowd-sourcing that involves systematic analysis of digital communications to detect real-world events. Here we consider the use of social sensing for observing natural hazards. In particular, we present a case study that uses data from a popular social media platform (Twitter) to detect and locate flood events in the UK.

View Article and Find Full Text PDF

The Gaia hypothesis postulates that life influences Earth's feedback mechanisms to form a self regulating system. This provokes the question: how can global self-regulation evolve? Most models demonstrating environmental regulation involving life have relied on alignment between local selection and global regulation. In these models environment-improving individuals or communities spread to outcompete environment degrading individuals/communities, leading to global regulation, but this depends on local differences in environmental conditions.

View Article and Find Full Text PDF

Nestedness is a statistical measure used to interpret bipartite interaction data in several ecological and evolutionary contexts, e.g. biogeography (species-site relationships) and species interactions (plant-pollinator and host-parasite networks).

View Article and Find Full Text PDF

Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage-bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively.

View Article and Find Full Text PDF

Tipping points are recognised in many systems, including ecosystems and elements of the climate system. But can the biosphere as a whole tip and, if so, how? Past global tipping points were rare and occurred in the coupled planetary-scale dynamics of the Earth system, not in the local-scale dynamics of its weakly interacting component ecosystems. Yet, evolutionary innovations have triggered past global transformations, suggesting that tipping point theory needs to go beyond bifurcations and networks to include evolution.

View Article and Find Full Text PDF

Background: Bacteriophage (viruses that infect bacteria) are of key importance in ecological processes at scales from biofilms to biogeochemical cycles. Close interaction can lead to antagonistic coevolution of phage and their hosts. Selection pressures imposed by phage are often frequency-dependent, such that rare phenotypes are favoured; this occurs when infection depends on some form of genetic matching.

View Article and Find Full Text PDF

Recycling of essential nutrients occurs at scales from microbial communities to global biogeochemical cycles, often in association with ecological interactions in which two or more species utilise each others' metabolic by-products. However, recycling loops may be unstable; sequences of reactions leading to net recycling may be parasitised by side-reactions causing nutrient loss, while some reactions in any closed recycling loop are likely to be costly to participants. Here we examine the stability of nutrient recycling loops in an individual-based ecosystem model based on microbial functional types that differ in their metabolism.

View Article and Find Full Text PDF

The Earth possesses a number of regulatory feedback mechanisms involving life. In the absence of a population of competing biospheres, it has proved hard to find a robust evolutionary mechanism that would generate environmental regulation. It has been suggested that regulation must require altruistic environmental alterations by organisms and, therefore, would be evolutionarily unstable.

View Article and Find Full Text PDF

Recent work with microbial communities has demonstrated an adaptive response to artificial selection at the level of the ecosystem. The reasons for this response and the level at which adaptation occurs are unclear: does selection act implicitly on traits of individual species, or are higher-level traits genuinely being selected? If the ecosystem response is just the additive combination of the responses of the constituent species, then the ecosystem response could be predicted a priori, and the ecosystem-level selection process is superfluous. However, if the ecosystem response results from ecological interactions among species, then selection at a higher level is necessary.

View Article and Find Full Text PDF