Publications by authors named "Hyunyoung Jeong"

The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host.

View Article and Find Full Text PDF

The gut microbiota affects hepatic drug metabolism. However, gut microbial factors modulating hepatic drug metabolism are largely unknown. In this study, using a mouse model of acetaminophen (APAP)-induced hepatotoxicity, we identified a gut bacterial metabolite that controls the hepatic expression of CYP2E1 that catalyzes the conversion of APAP to a reactive, toxic metabolite.

View Article and Find Full Text PDF

Retinoids and vitamin A are essential for multiple biological functions, including vision and immune responses, as well as the development of an embryo during pregnancy. Despite its importance, alterations in retinoid homeostasis during normal human pregnancy are incompletely understood. We aimed to characterize the temporal changes in the systemic retinoid concentrations across pregnancy and postpartum period.

View Article and Find Full Text PDF

Carfilzomib (CFZ) is a second-generation proteasome inhibitor effective in blood cancer therapy. However, CFZ has shown limited efficacy in solid tumor therapy due to the short half-life and poor tumor distribution. Albumin-coated nanocrystal (NC) formulation was shown to improve the circulation stability of CFZ, but its antitumor efficacy remained suboptimal.

View Article and Find Full Text PDF

The imidazo[1,2-a]pyridine-3-carboxyamides (IAPs) are a unique class of compounds endowed with impressive nanomolar in vitro potency against Mycobacterium tuberculosis (Mtb) as exemplified by clinical candidate Telacebec (Q203). These compounds target mycobacterial respiration through inhibition of the QcrB subunit of cytochrome bc1:aa super complex resulting in bacteriostatic efficacy in vivo. Our labs have had a long-standing interest in the design and development of IAPs.

View Article and Find Full Text PDF

Optical emission spectroscopy is widely used in semiconductor and display manufacturing for plasma process monitoring. However, because of the contamination of the viewport, quantitative analysis is extremely difficult; therefore, qualitative analysis is used to detect species in the process. To extend plasma monitoring in advanced precise processes, the contamination problem of the viewport must be solved.

View Article and Find Full Text PDF

Gut bacteria are predominant microorganisms in the gut microbiota and have been recognized to mediate a variety of biotransformations of xenobiotic compounds in the gut. This review is focused on one of the gut bacterial xenobiotic metabolisms, reduction. Xenobiotics undergo different types of reductive metabolisms depending on chemically distinct groups: azo (-NN-), nitro (-NO), alkene (-CC-), ketone (-CO), N-oxide (-NO), and sulfoxide (-SO).

View Article and Find Full Text PDF

Hepatic drug metabolism is a major route of drug elimination, mediated by multiple drug-metabolizing enzymes. Any changes in the rate and extent of hepatic drug metabolism can lead to altered drug efficacy or toxicity. Accumulating clinical evidence indicates that pregnancy is accompanied by changes in hepatic drug metabolism.

View Article and Find Full Text PDF

Retinoids are essential endogenous compounds involved in regulation of critical biologic processes, including maintenance of metabolic homeostasis in the liver. Much of the knowledge of altered retinoid homeostasis in human disease states is derived from changes in indirect markers such as mRNA expression of retinoid-related genes and circulating concentrations of retinol or its binding protein RBP4. We hypothesized that in the human liver, concentrations of the active retinoid all--retinoic acid (RA) correlate with the concentrations of retinyl palmitate (RP), the storage form of RA, retinol, the inactive vitamin A, and the mRNA expression of retinoid-related genes.

View Article and Find Full Text PDF

Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme that exhibits large interindividual variability. Recent studies suggest that differential transcriptional regulation of CYP2D6 in part may be responsible for the variability. In this study, we characterized potential determinants of CYP 2D6  transcript levels in healthy human liver tissue samples (n = 115), including genetic polymorphisms in CYP2D6 and the genes encoding transcription regulators for CYP2D6 expression; mRNA expression of the transcription factors and their known target genes; and hepatic levels of bile acids and retinoids, agents that modulate the expression/activity of the transcription factors.

View Article and Find Full Text PDF

- retinoic acid (atRA) is used to treat certain cancers and dermatologic diseases. A common adverse effect of atRA is hypercholesterolemia; cytochrome P450 (CYP) 7A repression is suggested as a driver. However, the underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Tacrolimus exhibits low and variable drug exposure after oral dosing, but the contributing factors remain unclear. Based on our recent report showing a positive correlation between fecal abundance of and oral tacrolimus dose in kidney transplant patients, we tested whether and other gut abundant bacteria are capable of metabolizing tacrolimus. Incubation of with tacrolimus led to production of two compounds (the major one named M1), which was not observed upon tacrolimus incubation with hepatic microsomes.

View Article and Find Full Text PDF

(OFI) is grown abundantly in arid areas and its fruits are regarded as an important food and nutrient source owing to the presence of flavonoids, minerals, and proteins. The previous report that OFI exerts phytoestrogenic activity makes it plausible for OFI-containing supplements to be used as alternative estrogen replacement therapy. In the case of polypharmacy with the consumption of OFI-containing botanicals in post- or peri-menopausal women, it is critical to determine the potential drug-OFI interaction due to the modulation of drug metabolism.

View Article and Find Full Text PDF

By screening a collection of mutants deleted for genes encoding small proteins of ≤60 amino acids, we identified three paralogous small genes (, , and ) required for wild-type flagellum-dependent swimming and swarming motility. The , , and genes encode small proteins of 55, 60, and 60 amino acid residues, respectively. A bioinformatics analysis predicted that these small proteins are intrinsically disordered proteins, and circular dichroism analysis of purified recombinant proteins confirmed that all three proteins are unstructured in solution.

View Article and Find Full Text PDF

The seminal paper on the CYP2D6 Activity Score (AS) was first published ten years ago and, since its introduction in 2008, it has been widely accepted in the field of pharmacogenetics. This scoring system facilitates the translation of highly complex diplotype data into a patient’s phenotype to guide drug therapy and is at the core of all gene/drug pair guidelines issued by the Clinical Pharmacogenetics Implementation Consortium (CPIC). The AS, however, only explains a portion of the variability observed among individuals and ethnicities.

View Article and Find Full Text PDF

This article is a report on a symposium entitled "Physiological Regulation of Drug Metabolism and Transport" sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2017 meeting in Chicago, IL. The contributions of physiologic and pathophysiological regulation of drug-metabolizing enzymes and transporters to interindividual variability in drug metabolism are increasingly recognized but in many cases are not well understood. The presentations herein discuss the phenomenology, consequences, and mechanism of such regulation.

View Article and Find Full Text PDF

In Staphylococcus aureus, an important Gram-positive human pathogen, the SaeRS two-component system is essential for the virulence and a good target for the development of anti-virulence drugs. In this study, we screened 12,200 small molecules for Sae inhibitors and identified two anti-cancer drugs, streptozotocin (STZ) and floxuridine (FU), as lead candidates for anti-virulence drug development against staphylococcal infections. As compared with STZ, FU was more efficient in repressing Sae-regulated promoters and protecting human neutrophils from S.

View Article and Find Full Text PDF

CYP2D6 genetic polymorphisms are considered a major contributor to the large interindividual variability in CYP2D6-mediated drug metabolism, but fail to explain a significant portion of the variability. The aim of this study was to assess the ability of the CYP2D6 activity score (AS) estimated from CYP2D6 genotype to predict CYP2D6 expression and enzyme activity. The CYP2D6 gene region was sequenced in 115 healthy human liver tissue samples to determine their CYP2D6 AS.

View Article and Find Full Text PDF

Herbal medicines and natural products used for maintenance of health or treatment of diseases have many biological effects, including altering the pharmacokinetics and metabolism of other medications. Daikenchuto (TU-100), an aqueous extract of ginger, ginseng, and Japanese green pepper fruit, is a commonly prescribed Kampo (Japanese herbal medicine) for postoperative ileus or bloating. The effects of TU-100 on drug metabolism have not been investigated.

View Article and Find Full Text PDF

Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP.

View Article and Find Full Text PDF

NADPH oxidase-derived reactive oxygen species (ROS) potentiate receptor tyrosine kinase (RTK) signaling, resulting in enhanced angiogenesis and tumor growth. In this study, we report that BJ-1301, a hybrid of pyridinol and alpha-tocopherol, exerts anticancer effects by dual inhibition of NADPH oxidase and RTK activities in endothelial and lung cancer cells. BJ-1301 suppresses ROS production by blocking translocation of NADPH oxidase cytosolic subunits to the cell membrane, thereby inhibiting activation.

View Article and Find Full Text PDF

Medical conditions accompanying obesity often require drug therapy, but whether and how obesity alters the expression of drug-metabolizing enzymes and thus drug pharmacokinetics is poorly defined. Previous studies have shown that high-fat diet (HFD) feeding and subsequent obesity in mice lead to altered expression of transcriptional regulators for cytochrome P450 CYP2D6, including hepatocyte nuclear factor 4 (HNF4, a transcriptional activator of CYP2D6) and small heterodimer partner (SHP, a transcriptional repressor of CYP2D6). The objective of this study was to examine whether diet-induced obesity alters CYP2D6 expression by modulating HNF4 and SHP expression.

View Article and Find Full Text PDF

Background: Cytochrome P450 (CYP) 2D6 is a major drug-metabolizing enzyme, responsible for eliminating 25% of marketed drugs. We recently identified SHP as a negative regulator of CYP2D6 expression and showed that factors that alter SHP expression influence CYP2D6 expression. Fenofibrate, an agonist of peroxisome proliferator-activated receptor α(PPARα), has been previously reported to upregulate SHP expression in the mouse liver.

View Article and Find Full Text PDF