Publications by authors named "Hyuntae Jung"

We present an unsupervised method to detect anomalous time series among a collection of time series. To do so, we extend traditional Kernel Density Estimation for estimating probability distributions in Euclidean space to Hilbert spaces. The estimated probability densities we derive can be obtained formally through treating each series as a point in a Hilbert space, placing a kernel at those points, and summing the kernels (a "point approach"), or through using Kernel Density Estimation to approximate the distributions of Fourier mode coefficients to infer a probability density (a "Fourier approach").

View Article and Find Full Text PDF

The phase behavior of polymers in room temperature ionic liquids is a topic of considerable interest. In this work we study the phase diagram of poly(ethylene oxide) in four imidazolium ionic liquids (ILs) using molecular simulation. We develop united atom models for 1-butyl-2,3-dimethylimidazolium ([BMMIM]), 1-ethyl-2,3-dimethylimidazolium ([EMMIM]), and 1-ethyl-3-methylimidazolium ([EMIM]) in an analogous fashion to previously developed models for 1-butyl-3-methylimidazolium ([BMIM]) and tetrafluoroborate ([BF]) using symmetry-adapted perturbation theory.

View Article and Find Full Text PDF

The phase behavior of complex fluids is a challenging problem for molecular simulations. Supervised machine learning (ML) methods have shown potential for identifying the phase boundaries of lattice models. In this work, we extend these ML methods to continuous-space systems.

View Article and Find Full Text PDF

The phase behavior of complex fluid mixtures is of continuing interest, but obtaining the phase diagram from computer simulations can be challenging. In the Gibbs ensemble method, for example, each of the coexisting phases is simulated in a different cell, and ensuring the equality of chemical potentials of all components requires the transfer of molecules from one cell to the other. For complex fluids such as polymers, successful insertions are rare.

View Article and Find Full Text PDF

The use of cell-rich hydrogels for three-dimensional (3D) cell culture has shown great potential for a variety of biomedical applications. However, the fabrication of appropriate constructs has been challenging. In this study, we describe a 3D printing process for the preparation of a multilayered 3D construct containing human mesenchymal stromal cells with a hydrogel comprised of atelocollagen and supramolecular hyaluronic acid (HA).

View Article and Find Full Text PDF

Stem cell therapy has attracted a great deal of attention for treating intractable diseases such as cancer, stroke, liver cirrhosis, and ischemia. Especially, mesenchymal stem cells (MSCs) have been widely investigated for therapeutic applications due to the advantageous characteristics of long life-span, facile isolation, rapid proliferation, prolonged transgene expression, hypo-immunogenicity, and tumor tropism. MSCs can exert their therapeutic effects by releasing stress-induced therapeutic molecules after their rapid migration to damaged tissues.

View Article and Find Full Text PDF

Synthetic hydrogels have been extensively investigated as artificial extracellular matrices (ECMs) for tissue engineering in vitro and in vivo. Crucial challenges for such hydrogels are sustaining long-term cytocompatible encapsulation and providing appropriate cues at the right place and time for spatio-temporal control of the cells. Here, in situ supramolecularly assembled and modularly modified hydrogels for long-term engineered mesenchymal stem cell (eMSC) therapy are reported using cucurbit[6]uril-conjugated hyaluronic acid (CB[6]-HA), diaminohexane conjugated HA (DAH-HA), and drug-conjugated CB[6] (drug-CB[6]).

View Article and Find Full Text PDF

Despite a wide investigation of hydrogels as an artificial extracellular matrix, there are few scaffold systems for the facile spatiotemporal control of mesenchymal stem cells (MSCs). Here, we report 3D tissue engineered supramolecular hydrogels prepared with highly water-soluble monofunctionalized cucurbit[6]uril-hyaluronic acid (CB[6]-HA), diaminohexane conjugated HA (DAH-HA), and drug conjugated CB[6] (drug-CB[6]) for the controlled chondrogenesis of human mesenchymal stem cells (hMSCs). The mechanical property of supramolecular HA hydrogels was modulated by changing the cross-linking density for the spatial control of hMSCs.

View Article and Find Full Text PDF

A facile in situ supramolecular assembly and modular modification of biocompatible hydrogels were demonstrated using cucurbit[6]uril-conjugated hyaluronic acid (CB[6]-HA), diaminohexane-conjugated HA (DAH-HA), and tags-CB[6] for cellular engineering applications. The strong and selective host-guest interaction between CB[6] and DAH made possible the supramolecular assembly of CB[6]/DAH-HA hydrogels in the presence of cells. Then, the 3D environment of CB[6]/DAH-HA hydrogels was modularly modified by the simple treatment with various multifunctional tags-CB[6].

View Article and Find Full Text PDF

Interferon alpha (IFNα) conjugated with polyethylene glycol (PEG) has been widely used for the treatment of hepatitis C virus (HCV) infection as a once-a-week injection formulation. However, the PEGylated IFNα has a low efficacy of ca. 39% and a side effect after repeated injections possibly due to the non-specific delivery with PEGylation.

View Article and Find Full Text PDF

Theranostic systems have been explored extensively for a diagnostic therapy in the forms of polymer conjugates, implantable devices, and inorganic nanoparticles. In this work, we report theranostic systems in situ assembled by host-guest chemistry responding to a request. As a model theranostic system on demand, cucurbit[6]uril-conjugated hyaluronate (CB[6]-HA) was synthesized and decorated with FITC-spermidine (spmd) and/or formyl peptide receptor like 1 (FPRL1) specific peptide-spmd by simple mixing in aqueous solution.

View Article and Find Full Text PDF

Membrane proteomics, the large-scale global analysis of membrane proteins, is often constrained by the efficiency of separating and extracting membrane proteins. Recent approaches involve conjugating membrane proteins with the small molecule biotin and using the receptor streptavidin to extract the labelled proteins. Despite the many advantages of this method, several shortcomings remain, including potential contamination by endogenously biotinylated molecules and interference by streptavidin during analytical stages.

View Article and Find Full Text PDF

The design and synthesis of a novel reduction-sensitive, robust, and biocompatible vesicle (SSCB[6]VC) are reported, which is self-assembled from an amphiphilic cucurbit[6]uril (CB[6]) derivative that contains disulfide bonds between hexaethylene glycol units and a CB[6] core. The remarkable features of SSCB[6]VC include: 1) facile, non-destructive, non-covalent, and modular surface modification using exceptionally strong host-guest chemistry; 2) high structural stability; 3) facile internalization into targeted cells by receptor-mediated endocytosis, and 4) efficient triggered release of entrapped drugs in a reducing environment such as cytoplasm. Furthermore, a significantly increased cytotoxicity of the anticancer drug doxorubicin to cancer cells is demonstrated using doxorubicin-loaded SSCB[6]VC, the surface of which is decorated with functional moieties such as a folate-spermidine conjugate and fluorescein isothiocyanate-spermidine conjugate as targeting ligand and fluorescence imaging probe, respectively.

View Article and Find Full Text PDF

Cucurbituril-based nanoparticles (CB[6]NPs) serve as new efficient vehicles for delivery of hydrophobic drugs, which have unique features including (1) a high drug loading capacity and efficiency, (2) noncovalently tunable surfaces, (3) efficient delivery of hydrophobic drugs into a cancer cell by receptor-mediated endocytosis, and (4) facile release of drugs into cytoplasm, which enhances the pharmaceutical effects of the drugs.

View Article and Find Full Text PDF

Insulin secretion from pancreatic beta-cells is an important process that affects the regulation of glucose level in the blood. In our previous study, we suggested that epidermal growth factor (EGF) stimulates insulin secretion by activating phospholipase D2 (PLD2) [H.Y.

View Article and Find Full Text PDF