Publications by authors named "Hyunseok Shim"

Untethered electrical stimulation or pacing of the heart is of critical importance in addressing the pressing needs of cardiovascular diseases in both clinical therapies and fundamental studies. Among various stimulation methods, light illumination-induced electrical stimulation via photoelectric effect without any genetic modifications to beating cells/tissues or whole heart has profound benefits. However, a critical bottleneck lies in the lack of a suitable material with tissue-like mechanical softness and deformability and sufficient optoelectronic performances toward effective stimulation.

View Article and Find Full Text PDF

A fully rubbery stretchable diode, particularly entirely based on stretchy materials, is a crucial device for stretchable integrated electronics in a wide range of applications, ranging from energy to biomedical, to integrated circuits, and to robotics. However, its development has been very nascent. Here, we report a fully rubbery Schottky diode constructed all based on stretchable electronic materials, including a liquid metal cathode, a rubbery semiconductor, and a stretchable anode.

View Article and Find Full Text PDF

As attractive photoactive materials, metal halide perovskites demonstrate outstanding performance in a wide range of optoelectronic applications. Among the various compositions studied, mixed-halide perovskites have a finely tunable band gap that renders them desirable for targeted applications. Despite their advantages, photoinduced halide segregation often deters the photoelectric stability of the materials.

View Article and Find Full Text PDF

An accurate extraction of physiological and physical signals from human skin is crucial for health monitoring, disease prevention, and treatment. Recent advances in wearable bioelectronics directly embedded to the epidermal surface are a promising solution for future epidermal sensing. However, the existing wearable bioelectronics are susceptible to motion artifacts as they lack proper adhesion and conformal interfacing with the skin during motion.

View Article and Find Full Text PDF

Artificial synaptic devices that can be stretched similar to those appearing in soft-bodied animals, such as earthworms, could be seamlessly integrated onto soft machines toward enabled neurological functions. Here, we report a stretchable synaptic transistor fully based on elastomeric electronic materials, which exhibits a full set of synaptic characteristics. These characteristics retained even the rubbery synapse that is stretched by 50%.

View Article and Find Full Text PDF

An intrinsically stretchable rubbery semiconductor with high mobility is critical to the realization of high-performance stretchable electronics and integrated devices for many applications where large mechanical deformation or stretching is involved. Here, we report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility, obtained by introducing metallic carbon nanotubes into a rubbery semiconductor composite. This enhancement in effective carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance.

View Article and Find Full Text PDF

We demonstrate wide colour tunability of polydimethylsiloxane-based alternating-current-driven electroluminescent devices with intrinsically stretchable characteristics achieved by simply modulating the electrical frequency. By employing both a screen-printed emitting layer and frequency-dependent colour tuning of ZnS:Cu-based phosphors, we demonstrate various coloured patterned images in a single device. We also show enhanced colour-tuning performance by mixing multi-colour phosphors, which results in a broad range of available coordinates in colour space.

View Article and Find Full Text PDF

We report the formation of laterally stacked ambipolar crystal wire for high-mobility organic field-effect transistors (OFETs), along with a simple logic circuit through a solution process. A soluble pentacene derivative, 6,13-bis(triisopropylsilylethynyl)pentacene (Tips-pentacene), and N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) were used as p-type and n-type organic semiconductors, respectively. The laterally stacked ambipolar crystal wire is made up of Tips-pentacene and PTCDI-C8 crystals in a structure of Tips-pentacene/PTCDI-C8/Tips-pentacene (TPT).

View Article and Find Full Text PDF