Background: Whether telomere length (TL), an indicator of biological ageing, reflects Alzheimer's disease (AD)-related neuropathological change remains unclear. We investigated the relationships between TL, in vivo AD pathologies, including cerebral beta-amyloid and tau deposition, and cognitive outcomes in older adults.
Methods: A total of 458 older adults were included, encompassing both cognitively normal (CN) individuals and those cognitively impaired (CI), with the CI group consisting of individuals with mild cognitive impairment or AD dementia.
J Exerc Rehabil
February 2024
Purpose: The purpose of this pilot study was to determine whether physiological tremors (PTs) assessed using an accelerometer could be used to evaluate resistance exercise intensity.
Methods: Twenty healthy young men with no prior experience of resistance exercise were recruited. Different intensities (resting, 30%, 50%, and 70% of their predetermined one-repetition maximum (1-RM)) of arm-curl exercise were used to elicit PT.
Background: Participation in exercise, and dietary and nutritional intakes have an impact on the risk and prevalence of metabolic syndrome (MetS), but these effects may differ according to whether a person lives alone or in a multi-person household. We analyzed differences in physical activity (PA) levels and energy intake according to household-type and MetS presence among young adults, to investigate the relationships among these factors.
Methods: Data of 3974 young adults (aged > 19 years and < 40 years) were obtained from the Korean National Health and Nutrition Examination Survey (2016-2018).
Prog Neurobiol
September 2021
Successful clinical translation of stem cell-based therapy largely relies on the scalable and reproducible preparation of donor cells with potent therapeutic capacities. In this study, midbrain organoids were yielded from human pluripotent stem cells (hPSCs) to prepare cells for Parkinson's disease (PD) therapy. Neural stem/precursor cells (NSCs) isolated from midbrain organoids (Og-NSCs) expanded stably and differentiated into midbrain-type dopamine(mDA) neurons, and an unprecedentedly high proportion expressed midbrain-specific factors, with relatively low cell line and batch-to-batch variations.
View Article and Find Full Text PDFMany studies have shown the existence of cardiac stem cells in the myocardium and epicardial progenitor cells in the epicardium. However, the characteristics of stem cells in the endocardium has not been fully elucidated. In this study, we investigated the origin of newly identified cells in the blood and their therapeutic potential.
View Article and Find Full Text PDFParkinson's disease (PD) is neurodegenerative movement disorder characterized by degeneration of midbrain-type dopamine (mDA) neurons in the substantia nigra (SN). The RNA-binding protein Lin28 plays a role in neuronal stem cell development and neuronal differentiation. In this study, we reveal that Lin28 conditional knockout (cKO) mice show degeneration of mDA neurons in the SN, as well as PD-related behavioral deficits.
View Article and Find Full Text PDFIdentifying the association between somatic mutations and the radiation response of tumor is essential for understanding the mechanisms and practicing personalized radiotherapy. The present study aimed to discover specific genes or pathways that are associated with radiation response using targeted next-generation DNA sequencing. Fifty-five patients with various solid tumors whose specimen were sequenced using institutional panel which includes 148 cancer-related genes and received radiotherapy for a measurable tumor were analyzed.
View Article and Find Full Text PDFJ Exerc Rehabil
August 2019
The purpose of this study was to investigate the effectiveness of dynamic time warping (DTW) in gait research. Participants in this study were consist of 10 males and 10 females. Equipment used for collecting the gait data of participants in this study was three-dimensional (3D) motion analysis system consisted of 8 infrared CCD cameras operated with a sampling frequency of 120 frames/sec.
View Article and Find Full Text PDFBilateral common carotid arteries occlusion (BCCAO) causes an abrupt reduction of cerebral blood flow, and this method has been used to investigate the effects of chronic cerebral hypoperfusion on vascular dementia and neuronal injuries. Chronic cerebral hypoperfusion leads to functional changes in the hippocampus and then results in a cognitive impairment. We investigated the effect of preischemic treadmill exercise on short-term memory and blood-brain barrier integration following cerebral hypoperfusion caused by BCCAO.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT).
View Article and Find Full Text PDFFor the best results in quantitative polymerase chain reaction (qPCR) experiments, it is essential to design high-quality primers considering a multitude of constraints and the purpose of experiments. The constraints include many filtering constraints, homology test on a huge number of off-target sequences, the same constraints for batch design of primers, exon spanning, and avoiding single nucleotide polymorphism (SNP) sites. The target sequences are either in database or given as FASTA sequences, and the experiment is for amplifying either each target sequence with each corresponding primer pairs designed under the same constraints or all target sequences with a single pair of primers.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common age-related neurodegenerative disease in the elderly and the patients suffer from uncontrolled movement disorders due to loss of dopaminergic (DA) neurons on substantia nigra pars compacta (SNpc). We previously reported that transplantation of human fetal midbrain-derived neural precursor cells restored the functional deficits of a 6-hydroxy dopamine (6-OHDA)-treated rodent model of PD but its low viability and ethical issues still remain to be solved. Albeit immune privilege and neural differentiation potentials suggest mesenchymal stem cells (MSCs) from various tissues including human placenta MSCs (hpMSCs) for an alternative source, our understanding of their therapeutic mechanisms is still limited.
View Article and Find Full Text PDFTransplantation of neural progenitor cells (NPCs) is a potential therapy for treating neurodegenerative disorders, but this approach has faced many challenges and limited success, primarily because of inhospitable host brain environments that interfere with enriched neuron engraftment and function. Astrocytes play neurotrophic roles in the developing and adult brain, making them potential candidates for helping with modification of hostile brain environments. In this study, we examined whether astrocytic function could be utilized to overcome the current limitations of cell-based therapies in a murine model of Parkinson's disease (PD) that is characterized by dopamine (DA) neuron degeneration in the midbrain.
View Article and Find Full Text PDFWe have developed a good manufacturing practice for long-term cultivation of fetal human midbrain-derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region-specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells.
View Article and Find Full Text PDFDeciphering the molecular basis of neuronal cell death is a central issue in the etiology of neurodegenerative diseases, such as Parkinson's and Alzheimer's. Dysregulation of p53 levels has been implicated in neuronal apoptosis. The role of histone deacetylase 3 (HDAC3) in suppressing p53-dependent apoptosis has been recently emphasized; however, the molecular basis of modulation of p53 function by HDAC3 remains unclear.
View Article and Find Full Text PDF