Cholesteric liquid crystals (CLCs) are selectively reflective optical materials, the color of which can be tuned via electrical, thermal, mechanical, or optical stimuli. In this work, we show that self-regulation of the transmission of a circularly polarized incident beam can occur upon phototuning of the selective reflection peak of a photosensitive CLC mixture towards the pump wavelength. The autonomous behavior occurs as the red-shifting selective reflection peak approaches the wavelength of the incident laser light.
View Article and Find Full Text PDFWe report on improved gain and spectral control in co-extruded all-polymer multilayer distributed feedback (DFB) lasers achieved by folding and deliberate modification of the center "defect" layer. Because DFB laser gain is greater at spectral defects inside the reflection band than at the band edges, manipulation of structural defects can be used to alter spectral defects and thereby tune the output wavelength and improve laser efficiency. By experimentally terracing the layer that becomes the center of the fold, we tuned the lasing wavelength across the reflection stop-band (∼25 nm) in controllable, discrete steps.
View Article and Find Full Text PDF5-Lipoxygenase (5-LOX) is important enzyme in the biosynthesis of leukotrienes, and is a potential target in the treatment of asthma and allergy. We designed and synthesized a series of benzoxazoles and benzothiazoles as 5-LOX inhibitors. Fourteen compounds prepared showed the inhibition of LTC4 formation with IC(50) value of 0.
View Article and Find Full Text PDFWe have investigated the formation of in-bandgap delocalized modes due to random lattice disorder as determined from the longitudinal mode spacing in a distributed Bragg laser. We were able to measure the penetration depth, and from transfer matrix simulations, determine how the localization length is altered for disordered lattices. Transfer matrix simulations and studies of the ensemble average were able to connect the gap delocalized modes to localized modes outside of the gap as expected from consideration of Anderson localization, as well as identify the controlling parameters.
View Article and Find Full Text PDFWe have assembled and studied melt-processed all-polymer lasers comprising distributed Bragg reflectors that were fabricated in large sheets using a co-extrusion process and define the cavities for dye-doped compression-molded polymer gain core sheets. Distributed Bragg reflector (DBR) resonators consisting of 128 alternating poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) layers were produced by multilayer co-extrusion. Gain media were fabricated by compression-molding thermoplastic host poly notmers doped with organic laser dyes.
View Article and Find Full Text PDF