Publications by authors named "Hyunjin Moon"

The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management.

View Article and Find Full Text PDF

Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues.

View Article and Find Full Text PDF

At aqueous interfaces, the distribution and dynamics of adsorbates are modulated by the behavior of interfacial water. Hydration of a hydrophobic surface can store entropy via the ordering of interfacial water, which contributes to the Gibbs energy of solute binding. However, there is little experimental evidence for the existence of such entropic reservoirs, and virtually no precedent for their rational design in systems involving extended interfaces.

View Article and Find Full Text PDF

Although the treatment of thyroid cancer has improved, unnecessary surgeries are performed due to a lack of specific diagnostic and prognostic markers. Therefore, the identification of novel biomarkers should be considered in the diagnosis and treatment of thyroid cancer. In this study, antibody arrays were performed using tumor and adjacent normal tissues of patients with papillary thyroid cancer, and several potential biomarkers were identified.

View Article and Find Full Text PDF

Surface polarity plays a key role in controlling molecular adsorption at solid-liquid interfaces, with major implications for reactions and separations. In this study, the chemical composition of periodic mesoporous organosilicas (PMOs) was varied by co-condensing Si(OEt) with organodisilanes, to create a homologous series of materials with similar surface areas, pore volumes, and hydroxyl contents. Their relative surface polarities, obtained by measuring the fluorescence of a solvatochromic dye, cover a wide range.

View Article and Find Full Text PDF

Osteosarcoma is known to be one of the frequently occurring cancers in dogs. Its prognosis is usually very poor, with a high incidence of lung metastasis. Although radiation therapy has become a major therapeutic choice for canine osteosarcoma, the high costs and unexpected side effects prevent some patients from considering this treatment.

View Article and Find Full Text PDF

Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector.

View Article and Find Full Text PDF

Although solution processed metal nanowire (NW) percolation networks are a strong candidate to replace commercial indium tin oxide, their performance is limited in thin film device applications due to reduced effective electrical areas arising from the dimple structure and percolative voids that single size metal NW percolation networks inevitably possess. Here, we present a transparent electrode based on a dual-scale silver nanowire (AgNW) percolation network embedded in a flexible substrate to demonstrate a significant enhancement in the effective electrical area by filling the large percolative voids present in a long/thick AgNW network with short/thin AgNWs. As a proof of concept, the performance enhancement of a flexible phosphorescent OLED is demonstrated with the dual-scale AgNW percolation network compared to the previous mono-scale AgNWs.

View Article and Find Full Text PDF

Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we introduce a highly stretchable and transparent supercapacitor based on electrochemically stable Ag-Au core-shell nanowire percolation network electrode.

View Article and Find Full Text PDF

Since transparent conducting films based on silver nanowires (AgNWs) have shown higher transmittance and electrical conductivity compared to those of indium tin oxide (ITO) films, the electronics industry has recognized them as promising substitutes. However, due to the higher haze value of AgNW transparent conducting films compared to ITO films, the clarity is decreased when AgNW films are applied to optoelectronic devices. In this study, we develop a highly transparent, low-haze, very long AgNW percolation network.

View Article and Find Full Text PDF

Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis.

View Article and Find Full Text PDF

Hypoxia-Inducible Factor-1 (HIF-1) plays an important role as a transcription factor under hypoxia. It activates numerous genes including those involved in angiogenesis, glucose metabolisms, cell proliferation and cell survival. The HIF-1 alpha subunit is regulated by 2-oxoglutarate (OG)- and Fe(II)-dependent hydroxylases, including Factor Inhibiting HIF-1 (FIH-1).

View Article and Find Full Text PDF

Retinoic acid inducible gene-I (RIG-I) is an essential component of the innate immune system that is responsible for the detection and elimination of invading viruses. RIG-I recognizes viral RNAs inside the cell and then initiates downstream signalling to activate the IRF-3 and NF-kappaB genes, which results in the production of type I interferons. RIG-I is composed of an N-terminal CARD domain for signalling and C-terminal helicase and repressor domains for RNA recognition.

View Article and Find Full Text PDF