Silica nanomaterials have been studied based on their potential applications in a variety of fields, including biomedicine and agriculture. A number of different molecules have been condensed onto silica nanoparticles' surfaces to present the surface chemistry needed for a given application. Among those molecules, (3-aminopropyl)triethoxysilane (APS) is one of the most commonly applied silanes used for nanoparticle surface functionalization to achieve charge reversal as well as to enable cargo loading.
View Article and Find Full Text PDFEnviron Sci Technol
October 2021
Projected population increases over the next 30 years have elevated the need to develop novel agricultural technologies to dramatically increase crop yield, particularly under conditions of high pathogen pressure. In this study, silica nanoparticles (NPs) with tunable dissolution rates were synthesized and applied to watermelon () to enhance plant growth while mitigating development of the Fusarium wilt disease caused by f. sp.
View Article and Find Full Text PDFSpherical agglomerates of an active pharmaceutical ingredient, ferulic acid (FA), were prepared using four different spherical crystallization methods, i.e., quasi-emulsion solvent diffusion (QESD), anti-solvent, pH shift, and the direct method.
View Article and Find Full Text PDFSilica nanoparticles have received great attention as versatile nanomaterials in many fields such as drug delivery, sensing, and imaging due to their physical and chemical flexibility. Specifically, the silanol groups at the surface of silica nanoparticles have enabled various surface modifications and functionalization to tailor the nanoparticles for each application. Chemical tailoring to switch from negative to positive surface charge has been one important strategy to enhance cell internalization and biodistribution of the nanoparticles.
View Article and Find Full Text PDFPlasmonic materials show great potential for selective photocatalysis under relatively mild reaction conditions. However, the catalytic activity of these plasmonic catalysts can also depend upon the support material that stabilizes the catalysts, where the composition of the catalytic support may change the overall photocatalytic efficiency and yield. It is unknown how changes in the support material may change the plasmon-driven photocatalysis, which may be initiated by plasmon-derived hot carriers, localized heating, or enhanced electromagnetic fields.
View Article and Find Full Text PDFNoble metal nanoparticles have been extensively studied to understand and apply their plasmonic responses, upon coupling with electromagnetic radiation, to research areas such as sensing, photocatalysis, electronics, and biomedicine. The plasmonic properties of metal nanoparticles can change significantly with changes in particle size, shape, composition, and arrangement. Thus, stabilization of the fabricated nanoparticles is crucial for preservation of the desired plasmonic behavior.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2018
Research at the interface of synthetic materials, biochemistry, and analytical techniques has enabled sensing platforms for applications across many research communities. Herein we review the materials used as affinity agents to create surface-enhanced Raman spectroscopy (SERS) sensors. Our scope includes those affinity agents (antibody, aptamer, small molecule, and polymer) that facilitate the intrinsic detection of targets relevant to biology, medicine, national security, environmental protection, and food safety.
View Article and Find Full Text PDFThis Feature describes several methods for the characterization of magnetic nanoparticles in biological matrices such as cells and tissues. The Feature focuses on sample preparation and includes several case studies where multiple techniques were used in conjunction.
View Article and Find Full Text PDF