Proc Natl Acad Sci U S A
April 2024
Multiple brain regions are engaged in classical fear conditioning. Despite evidence for cerebellar involvement in fear conditioning, the mechanisms by which cerebellar outputs modulate fear learning and memory remain unclear. We identify a population of deep cerebellar nucleus (DCN) neurons with monosynaptic glutamatergic projections to the lateral parabrachial nucleus (lPBN) (DCN neurons) in mice.
View Article and Find Full Text PDFKRAS mutations are associated with rare cases of neurodevelopmental disorders that can cause intellectual disabilities. Previous studies showed that mice expressing a mutant KRAS have impaired the development and function of GABAergic inhibitory neurons, which may contribute to behavioural deficits in the mutant mice. However, the underlying cellular mechanisms and the role of excitatory neurons in these behavioural deficits in adults are not fully understood.
View Article and Find Full Text PDFPain sensation is powerfully modulated by signal processing in the brain, and pain becomes chronic with the dysfunction of the pain modulatory system; however, the underlying mechanisms are unclear. We found that the metabotropic glutamate receptor 5 (mGluR5) in the periaqueductal gray (PAG), the key area of endogenous pain modulation, is persistently active in normal conditions to maintain an appropriate sensory perception. In the neuropathic pain condition, Homer1a, an activity-dependent immediate early gene product, disrupted the persistent mGluR5 activity resulting in chronic pain.
View Article and Find Full Text PDFSHP2 is an unusual protein phosphatase that functions as an activator for several signaling pathways, including the RAS pathway, while most other phosphatases suppress their downstream signaling cascades. The physiological and pathophysiological roles of SHP2 have been extensively studied in the field of cancer research. Mutations in the gene which encodes SHP2 are also highly associated with developmental disorders, such as Noonan syndrome (NS), and cognitive deficits including learning disabilities are common among NS patients.
View Article and Find Full Text PDFNeurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by loss-of-function mutations in NF1 gene, which encodes a GTPase activating protein for RAS. NF1 affects multiple systems including brain and is highly associated with cognitive deficits such as learning difficulties and attention deficits. Previous studies have suggested that GABAergic inhibitory neuron is the cell type primarily responsible for the learning deficits in mouse models of NF1.
View Article and Find Full Text PDFMutations in RAS signaling pathway components cause diverse neurodevelopmental disorders, collectively called RASopathies. Previous studies have suggested that dysregulation in RAS-extracellular signal-regulated kinase (ERK) activation is restricted to distinct cell types in different RASopathies. Some cases of Noonan syndrome (NS) are associated with gain-of-function mutations in the phosphatase SHP2 (encoded by ); however, SHP2 is abundant in multiple cell types, so it is unclear which cell type(s) contribute to NS phenotypes.
View Article and Find Full Text PDFAlthough many reports have revealed dysfunction of endothelial cells in aging, resulting in blood-brain barrier (BBB) breakdown, the underlying mechanism or mechanisms remain to be explored. Here, we find that acid sphingomyelinase (ASM) is a critical factor for regulating brain endothelial barrier integrity. ASM is increased in brain endothelium and/or plasma of aged humans and aged mice, leading to BBB disruption by increasing caveolae-mediated transcytosis.
View Article and Find Full Text PDFFront Mol Neurosci
September 2017
The importance of actin-binding proteins (ABPs) in the regulation of synapse morphology and plasticity has been well established. SH3 protein interacting with Nck, 90 kDa (SPIN90), an Nck-interacting protein highly expressed in synapses, is essential for actin remodeling and dendritic spine morphology. Synaptic targeting of SPIN90 to spine heads or dendritic shafts depends on its phosphorylation state, leading to blockage of cofilin-mediated actin depolymerization and spine shrinkage.
View Article and Find Full Text PDFControl of Ca flux between the cytosol and intracellular Ca stores is essential for maintaining normal cellular function. It has been well established in both neuronal and non-neuronal cells that stromal interaction molecule 1 (STIM1) initiates and regulates refilling Ca into the ER. Here, we describe a novel, additional role for STIM1, the regulation of free cytosolic Ca, and the consequent control of spike firing in neurons.
View Article and Find Full Text PDFMutations in fused in sarcoma (FUS), a DNA/RNA binding protein, are associated with familial amyotrophic lateral sclerosis (ALS). However, little is known about how ALS-causing mutations alter protein-protein and protein-RNA complexes and contribute to neurodegeneration. In this study, we identified protein arginine methyltransferase 1 (PRMT1) as a protein that more avidly associates with ALS-linked FUS-R521C than with FUS-WT (wild type) or FUS-P525L using co-immunoprecipitation and LC-MS analysis.
View Article and Find Full Text PDFAutism spectrum disorders (ASDs) are a group of developmental disorders that cause variable and heterogeneous phenotypes across three behavioral domains such as atypical social behavior, disrupted communications, and highly restricted and repetitive behaviors. In addition to these core symptoms, other neurological abnormalities are associated with ASD, including intellectual disability (ID). However, the molecular etiology underlying these behavioral heterogeneities in ASD is unclear.
View Article and Find Full Text PDFThe RAS-mitogen-activated protein kinase (MAPK) signaling pathway plays critical roles in brain function, including learning and memory. Mutations of molecules in the RAS-MAPK pathway are associated with a group of disorders called RASopathies, which include Noonan syndrome, neurofibromatosis type 1, Costello syndrome, Noonan syndrome with multiple lentigines, Legius syndrome, and cardio-facio-cutaneous syndrome. RASopathies share certain clinical symptoms, including craniofacial abnormalities, heart defects, delayed growth, and cognitive deficits such as learning disabilities, while each individual syndrome also displays unique phenotypes.
View Article and Find Full Text PDFCD38 is an enzyme that catalyzes the formation of cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate, both of which are involved in the mobilization of Ca(2+) from intracellular stores. Recently, CD38 has been shown to regulate oxytocin release from hypothalamic neurons. Importantly, CD38 mutations are associated with autism spectrum disorders (ASD) and CD38 knockout (CD38(-/-)) mice display ASD-like behavioral phenotypes including deficient parental behavior and poor social recognition memory.
View Article and Find Full Text PDFIn Noonan syndrome (NS) 30-50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11(D61G) in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor.
View Article and Find Full Text PDFMutations in fused in sarcoma (FUS), a DNA/RNA binding protein, have been associated with familial amyotrophic lateral sclerosis (fALS), which is a fatal neurodegenerative disease that causes progressive muscular weakness and has overlapping clinical and pathologic characteristics with frontotemporal lobar degeneration. However, the role of autophagy in regulation of FUS-positive stress granules (SGs) and aggregates remains unclear. We found that the ALS-linked FUS(R521C) mutation causes accumulation of FUS-positive SGs under oxidative stress, leading to a disruption in the release of FUS from SGs in cultured neurons.
View Article and Find Full Text PDFNeurite growth requires neurite extension and retraction, which are associated with protein degradation. Autophagy is a conserved bulk degradation pathway that regulates several cellular processes. However, little is known about autophagic regulation during early neurite growth.
View Article and Find Full Text PDFTar-DNA binding protein of 43kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons.
View Article and Find Full Text PDFEndosomal sorting complexes required for transport (ESCRTs) regulate a key sorting step of protein trafficking between endosomal compartments in lysosomal degradation. Interestingly, mutations in charged multivesicular body protein 2B (CHMP2B), which is a core subunit of ESCRT-III, have been identified in some neurodegenerative diseases. However, the cellular pathogenesis resulting from CHMP2B missense mutations is unclear.
View Article and Find Full Text PDFJ Altern Complement Med
June 2010
Objective: The aim of this study was to develop and evaluate a questionnaire for Cold and Heat pathologic pattern identification in the context of Traditional Chinese Medicine (TCM). This questionnaire was intended to classify subjects into Cold or Heat pattern groups, a distinction that is useful in clinical trials of both herbal and acupuncture treatments.
Methods: A questionnaire that had been developed in a previous study was completed by 63 patients (Group A) and 64 patients (Group B) from TCM hospitals.
Zingansikpoongtang (ZST) is a Korean herbal prescription, which has been successfully applied for the various neurodegenerative diseases. However, its effect remains unknown in the experimental models. In this study, we examined the effect of ZST on production of interleukin (IL)-6 and IL-8, and expression of cyclooxygenase (COX)-2 in IL-1beta and beta-amyloid [25-35] fragment (Abeta)-stimulated human astrocytoma cell line U373MG.
View Article and Find Full Text PDF