Orthopedic biomaterial-associated infections remain a major clinical challenge, with Staphylococcus aureus being the most common pathogen. S. aureus biofilm formation enhances immune evasion and antibiotic resistance, resulting in a local, indolent infection that can persist long-term without symptoms before eventual hardware failure, bone non-union, or sepsis.
View Article and Find Full Text PDFBackground: Our understanding of the biology of ankle arthrodesis is based largely on work in spine and long bone animal models. However, the local soft tissue and vascular anatomy of the foot and ankle is different from that of the spine. Accordingly, the objective of this study was to develop a small animal ankle arthrodesis model.
View Article and Find Full Text PDFUnlabelled: Poly(para-phenylene) (PPP) is a novel aromatic polymer with higher strength and stiffness than polyetheretherketone (PEEK), the gold standard material for polymeric load-bearing orthopaedic implants. The amorphous structure of PPP makes it relatively straightforward to manufacture different architectures, while maintaining mechanical properties. PPP is promising as a potential orthopaedic material; however, the biocompatibility and osseointegration have not been well investigated.
View Article and Find Full Text PDFBone marrow derived mesenchymal stem cells (MSCs) are regularly utilized for translational therapeutic strategies including cell therapy, tissue engineering, and regenerative medicine and are frequently used in preclinical mouse models for both mechanistic studies and screening of new cell based therapies. Current methods to culture murine MSCs (mMSCs) select for rapidly dividing colonies and require long-term expansion. These methods thus require months of culture to generate sufficient cell numbers for feasibility studies in a lab setting and the cell populations often have reduced proliferation and differentiation potential, or have become immortalized cells.
View Article and Find Full Text PDFUnlabelled: The strategy of vascular tissue engineering is to create a vascular substitute by combining autologous vascular cells with a tubular-shaped biodegradable scaffold. We have previously developed a novel electrospun bilayered vascular scaffold that provides proper biological and biomechanical properties as well as structural configuration. In this study, we investigated the clinical feasibility of a cellularized vascular scaffold in a preclinical large animal model.
View Article and Find Full Text PDFTissue engineering offers an attractive approach to creating functional small-diameter (<5mm) blood vessels by combining autologous cells with a natural and/or synthetic scaffold under suitable culture conditions, which results in a tubular construct that can be implanted in vivo. We have previously developed a vascular scaffold fabricated by electrospinning poly(ε-caprolactone) (PCL) and type I collagen that mimics the structural and biomechanical properties of native vessels. In this study, we investigated whether a smooth muscle cell (SMC) sheet could be combined with the electrospun vascular scaffolds to produce a more mature smooth muscle layer as compared to the conventional cell seeding method.
View Article and Find Full Text PDF