A key issue in lithium-ion batteries is understanding the solid electrolyte interphase (SEI) resulting from a reductive reaction on the anode/electrolyte interface. The presence of the SEI layer affects the transport behavior of the ions and electrons between the anode and electrolyte. Despite the influence on interfacial properties, the formation and evolution mechanism of the SEI layer are unclear owing to their complexity and dynamic nature.
View Article and Find Full Text PDFJ Chem Theory Comput
June 2023
Pyrolysis is a promising technology for chemical recycling of waste plastics, since it enables the generation of high-value chemicals with low capital and operating cost. The calculation of thermodynamic equilibrium composition using the Gibbs free energy minimization approach can determine pyrolysis operating conditions that produce desired products. However, the availability of thermochemical data can limit the application of equilibrium calculations.
View Article and Find Full Text PDFSynchrotron x-ray fluorescence has been used to measure temperatures in optically dense gases where traditional methods would fail. These data provide a benchmark for stringent tests of computational fluid dynamics models for complex systems where physical and chemical processes are intimately linked. The experiments measured krypton number densities in a sooting, atmospheric pressure, nonpremixed coflow flame that is widely used in combustion research.
View Article and Find Full Text PDFSooting tendencies of a series of nitrogen-containing hydrocarbons (NHCs) have been recently characterized experimentally using the yield sooting index (YSI) methodology. This work aims to identify soot-relevant reaction pathways for three selected CHN amines, namely, dipropylamine (DPA), diisopropylamine (DIPA), and 3,3-dimethylbutylamine (DMBA) using ReaxFF molecular dynamics (MD) simulations and quantum mechanical (QM) calculations and to interpret the experimentally observed trends. ReaxFF MD simulations are performed to determine the important intermediate species and radicals involved in the fuel decomposition and soot formation processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2018
Strontium segregation at perovskite surfaces deteriorates the oxygen reduction reaction kinetics of cathodes and therefore the long-term stability of solid oxide fuel cells (SOFCs). For the systematic and quantitative assessment of the elastic energy in perovskite oxides, which is known to be one of the main origins for dopant segregation, we report the fractional free volume as a new descriptor for the elastic energy in the perovskite oxide system. To verify the fractional free volume model, three samples were prepared with different A-site dopants: LaSrCoO, LaSrCaCoO, and LaCaCoO.
View Article and Find Full Text PDFThe liquid organic hydrogen carrier (LOHC) 2-(N-methylbenzyl)pyridine (MBP) shows good potential for H storage based on reversible hydrogenation and dehydrogenation, with an H storage density of 6.15 wt %. This material and the corresponding perhydro product (H -MBP) are liquids at room temperature.
View Article and Find Full Text PDFUnderstanding the adsorption phenomena of small adsorbates involved in surface reactions on transition metals is important because their adsorption strength can be a descriptor for predicting the catalytic activity. To explore adsorption energies on a wide range of binary transition metal alloys, however, tremendous computational efforts are required. Using density functional theory (DFT) calculations, here we suggest a "surface mixing rule" to predict the adsorption energies of H, O, S, CO and OH on bimetallic alloys, based on the linear interpolation of adsorption energies on each pure surface.
View Article and Find Full Text PDF