In this study, the operation parameters of a partial nitrification process (PN) treating saline wastewater were optimized using the Box-Behnken design via the response surface methodology (BBD-RSM). A novel strategy based on the control of the carbon/nitrogen ratio (C/N), alkalinity/ammonia ratio (K/A), and salinity in three stages was used to achieve PN in a sequence batch reactor. The results demonstrated that a high and stable PN was completed after 50 d with an ammonia removal efficiency (ARE) of 98.
View Article and Find Full Text PDFDeep-blue emitting Iridium (Ir) complexes with horizontally oriented emitting dipoles are newly designed and synthesized through engineering of the ancillary ligand, where 2',6'-difluoro-4-(trimethylsilyl)-2,3'-bipyridine (dfpysipy) is used as the main ligand. Introduction of a trimethylsilyl group at the pyridine and a nitrogen at the difluoropyrido group increases the bandgap of the emitter, resulting in deep-blue emission. Addition of a methyl group (mpic) to a picolinate (pic) ancillary ligand or replacement of an acetate structure of pic with a perfluoromethyl-triazole structure (fptz) increases the horizontal component of the emitting dipoles in sequence of mpic (86%) > fptz (77%) > pic (74%).
View Article and Find Full Text PDFThe development of highly efficient blue organic light-emitting diodes (OLEDs) with good stability is currently the most important issue in OLED displays and lighting. This paper reports an efficient blue fluorescent OLED based on a deep-blue-emitting phosphorescent sensitizer [(dfpysipy)Ir(mpic)] and a conventional fluorescent emitter (TBPe). Efficient triplet harvesting by the fluorescent emitter occurs in the OLED because of sensitization even though the difference in the emission energy between the phosphorescent and fluorescent emissions was only 0.
View Article and Find Full Text PDFWe rediscover the null ellipsometry principle for an outstanding image-contrast enhancement method for darkfield imaging. Simply by adding polarizers, compensators, and a photodiode sensor to a conventional darkfield imaging system and applying the null principle, Si nano-cylinder structures as small as D20 nm (H20 nm) on non-patterned wafer, and gap defects as small as 14.6 nm and bridge defects as small as 21.
View Article and Find Full Text PDFHighly efficient, yellow-fluorescent organic light-emitting diodes with a maximum external quantum efficiency exceeding 25.0% and extended lifetime are reported using iridium-complex sensitizers doped in an exciplex host. Energy transfer processes reduce the lifetime of the exciplex and excitons on the Ir complexes and enable an excited state to exist in a conventional fluorescent emitter, thereby increasing device lifetime.
View Article and Find Full Text PDF