Tunable and multi-functional nanophotonic devices are used for applications from beam steering to sensing. Yet little is understood about fundamental limits to their functionality. The difficulty lies with the fact that it is a single structure that must exhibit optimal response over multiple scenarios.
View Article and Find Full Text PDFIncreasing the refractive index available for optical and nanophotonic systems opens new vistas for design, for applications ranging from broadband metalenses to ultrathin photovoltaics to high-quality-factor resonators. In this work, fundamental limits to the refractive index of any material are derived, given only the underlying electron density and either the maximum allowable dispersion or the minimum bandwidth of interest. In the realm of small to modest dispersion, the bounds are closely approached and not surpassed by a wide range of natural materials, showing that nature has already nearly reached a Pareto frontier for refractive index and dispersion.
View Article and Find Full Text PDF