Publications by authors named "Hyungkeuk Lee"

Due to the recent increasing utilization of deep learning models on edge devices, the industry demand for Deep Learning Model Optimization (DLMO) is also increasing. This paper derives a usage strategy of DLMO based on the performance evaluation through light convolution, quantization, pruning techniques and knowledge distillation, known to be excellent in reducing memory size and operation delay with a minimal accuracy drop. Through experiments regarding image classification, we derive possible and optimal strategies to apply deep learning into Internet of Things (IoT) or tiny embedded devices.

View Article and Find Full Text PDF

Compressive sensing (CS) makes it possible to more naturally create compact representations of data with respect to a desired data rate. Through wavelet decomposition, smooth and piecewise smooth signals can be represented as sparse and compressible coefficients. These coefficients can then be effectively compressed via the CS.

View Article and Find Full Text PDF