The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and characterize the problem. In this work, we propose a framework which besides recognizing and localizing various plant abnormalities also informs the user about the severity of the diseases infecting the plant.
View Article and Find Full Text PDFFine segmentation labelling tasks are time consuming and typically require a great deal of manual labor. This paper presents a novel method for efficiently creating pixel-level fine segmentation labelling that significantly reduces the amount of necessary human labor. The proposed method utilizes easily produced multiple and complementary coarse labels to build a complete fine label via supervised learning.
View Article and Find Full Text PDF