The possibility that single-cell gene expression datasets could leak information about individuals' genotypes has been largely unexplored. Walker et al. showed that even noisy genotype predictions derived from these data can be linked to the corresponding genotype profiles with significant accuracy.
View Article and Find Full Text PDFThe introduction of trusted execution environments (TEEs), such as secure enclaves provided by the Intel SGX technology has enabled secure and privacy-preserving computation on the cloud. The stringent resource limitations, such as memory constraints, required by some TEEs necessitates the development of computational approaches with reduced memory usage, such as sketching. One example is the SkSES method for GWAS on a cohort of case and control samples from multiple institutions, which identifies the most significant SNPs in a privacy-preserving manner without disclosing sensitive genotype information to other institutions or the cloud service provider.
View Article and Find Full Text PDFThe rapidly growing scale and variety of biomedical data repositories raise important privacy concerns. Conventional frameworks for collecting and sharing human subject data offer limited privacy protection, often necessitating the creation of data silos. Privacy-enhancing technologies (PETs) promise to safeguard these data and broaden their usage by providing means to share and analyze sensitive data while protecting privacy.
View Article and Find Full Text PDFFinding relatives within a study cohort is a necessary step in many genomic studies. However, when the cohort is distributed across multiple entities subject to data-sharing restrictions, performing this step often becomes infeasible. Developing a privacy-preserving solution for this task is challenging owing to the burden of estimating kinship between all the pairs of individuals across data sets.
View Article and Find Full Text PDFProc IEEE Symp Secur Priv
May 2023
Principal component analysis (PCA) is an essential algorithm for dimensionality reduction in many data science domains. We address the problem of performing a federated PCA on private data distributed among multiple data providers while ensuring data confidentiality. Our solution, SF-PCA, is an end-to-end secure system that preserves the confidentiality of both the original data and all intermediate results in a passive-adversary model with up to all-but-one colluding parties.
View Article and Find Full Text PDFGenome Biol
December 2023
Background: Genotype imputation is an essential step in genetic studies to improve data quality and statistical power. Public imputation servers are widely used by researchers to impute their data using otherwise access-controlled reference panels of high-fidelity genomes held by these servers.
Results: We report evidence against the prevailing assumption that providing access to panels only indirectly via imputation servers poses a negligible privacy risk to individuals in the panels.
Gene expression data provide molecular insights into the functional impact of genetic variation, for example, through expression quantitative trait loci (eQTLs). With an improving understanding of the association between genotypes and gene expression comes a greater concern that gene expression profiles could be matched to genotype profiles of the same individuals in another data set, known as a linking attack. Prior works show such a risk could analyze only a fraction of eQTLs that is independent owing to restrictive model assumptions, leaving the full extent of this risk incompletely understood.
View Article and Find Full Text PDFThe application of modern machine learning to retinal image analyses offers valuable insights into a broad range of human health conditions beyond ophthalmic diseases. Additionally, data sharing is key to fully realizing the potential of machine learning models by providing a rich and diverse collection of training data. However, the personallyidentifying nature of retinal images, encompassing the unique vascular structure of each individual, often prevents this data from being shared openly.
View Article and Find Full Text PDFIEEE Trans Inf Theory
June 2022
Motivated by the growing availability of personal genomics services, we study an information-theoretic privacy problem that arises when sharing genomic data: a user wants to share his or her genome sequence while keeping the genotypes at certain positions hidden, which could otherwise reveal critical health-related information. A straightforward solution of erasing (masking) the chosen genotypes does not ensure privacy, because the correlation between nearby positions can leak the masked genotypes. We introduce an erasure-based privacy mechanism with perfect information-theoretic privacy, whereby the released sequence is statistically independent of the sensitive genotypes.
View Article and Find Full Text PDFAdvances in genomics are increasingly depending upon the ability to analyze large and diverse genomic data collections, which are often difficult to amass due to privacy concerns. Recent works have shown that it is possible to jointly analyze datasets held by multiple parties, while provably preserving the privacy of each party's dataset using cryptographic techniques. However, these tools have been challenging to use in practice due to the complexities of the required setup and coordination among the parties.
View Article and Find Full Text PDFSecure multiparty computation (MPC) is a cryptographic tool that allows computation on top of sensitive biomedical data without revealing private information to the involved entities. Here, we introduce Sequre, an easy-to-use, high-performance framework for developing performant MPC applications. Sequre offers a set of automatic compile-time optimizations that significantly improve the performance of MPC applications and incorporates the syntax of Python programming language to facilitate rapid application development.
View Article and Find Full Text PDFIEEE Int Symp Parallel Distrib Process Workshops Phd Forum
August 2022
Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics.
View Article and Find Full Text PDFGenotype imputation is an essential tool in genomics research, whereby missing genotypes are inferred using reference genomes to enhance downstream analyses. Recently, public imputation servers have allowed researchers to leverage large-scale genomic data resources for imputation. However, privacy concerns about uploading one's genetic data to a server limit the utility of these services.
View Article and Find Full Text PDFMotivation: Recent advances in single-cell RNA-sequencing (scRNA-seq) technologies promise to enable the study of gene regulatory associations at unprecedented resolution in diverse cellular contexts. However, identifying unique regulatory associations observed only in specific cell types or conditions remains a key challenge; this is particularly so for rare transcriptional states whose sample sizes are too small for existing gene regulatory network inference methods to be effective.
Results: We present ShareNet, a Bayesian framework for boosting the accuracy of cell type-specific gene regulatory networks by propagating information across related cell types via an information sharing structure that is adaptively optimized for a given single-cell dataset.
Nonlinear data visualization methods, such as t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP), summarize the complex transcriptomic landscape of single cells in two dimensions or three dimensions, but they neglect the local density of data points in the original space, often resulting in misleading visualizations where densely populated subsets of cells are given more visual space than warranted by their transcriptional diversity in the dataset. Here we present den-SNE and densMAP, which are density-preserving visualization tools based on t-SNE and UMAP, respectively, and demonstrate their ability to accurately incorporate information about transcriptomic variability into the visual interpretation of single-cell RNA sequencing data. Applied to recently published datasets, our methods reveal significant changes in transcriptomic variability in a range of biological processes, including heterogeneity in transcriptomic variability of immune cells in blood and tumor, human immune cell specialization and the developmental trajectory of Caenorhabditis elegans.
View Article and Find Full Text PDFSharing data across research groups is an essential driver of biomedical research. While interactive query-answering systems for biomedical databases aim to facilitate the sharing of aggregate insights without divulging sensitive individual-level data, query answers can still leak private information about the individuals in the database. Here, we draw upon recent advances in differential privacy to introduce query-answering mechanisms that provably maximize the utility (e.
View Article and Find Full Text PDFAs the scale of genomic and health-related data explodes and our understanding of these data matures, the privacy of the individuals behind the data is increasingly at stake. Traditional approaches to protect privacy have fundamental limitations. Here we discuss emerging privacy-enhancing technologies that can enable broader data sharing and collaboration in genomics research.
View Article and Find Full Text PDFLarge-scale single-cell RNA sequencing (scRNA-seq) studies that profile hundreds of thousands of cells are becoming increasingly common, overwhelming existing analysis pipelines. Here, we describe how to enhance and accelerate single-cell data analysis by summarizing the transcriptomic heterogeneity within a dataset using a small subset of cells, which we refer to as a geometric sketch. Our sketches provide more comprehensive visualization of transcriptional diversity, capture rare cell types with high sensitivity, and reveal biological cell types via clustering.
View Article and Find Full Text PDFRepresenting data in hyperbolic space can effectively capture latent hierarchical relationships. To enable accurate classification of points in hyperbolic space while respecting their hyperbolic geometry, we introduce hyperbolic SVM, a hyperbolic formulation of support vector machine classifiers, and describe its theoretical connection to the Euclidean counterpart. We also generalize Euclidean kernel SVM to hyperbolic space, allowing nonlinear hyperbolic decision boundaries and providing a geometric interpretation for a certain class of indefinite kernels.
View Article and Find Full Text PDFAlthough combining data from multiple entities could power life-saving breakthroughs, open sharing of pharmacological data is generally not viable because of data privacy and intellectual property concerns. To this end, we leverage modern cryptographic tools to introduce a computational protocol for securely training a predictive model of drug-target interactions (DTIs) on a pooled dataset that overcomes barriers to data sharing by provably ensuring the confidentiality of all underlying drugs, targets, and observed interactions. Our protocol runs within days on a real dataset of more than 1 million interactions and is more accurate than state-of-the-art DTI prediction methods.
View Article and Find Full Text PDFThis month: selected work from the 2018 RECOMB meeting, organized by Ecole Polytechnique and held last April in Paris.
View Article and Find Full Text PDF