Objective: This research pioneers a novel approach to obtain a closed-form analytic solution to the nonlinear second order differential swing equation that models power system dynamics. The distinctive element of this study is the integration of a generalized load model known as a ZIP load model (constant impedance Z, constant current I, and constant power P loads).
Methods: Building on previous work where an analytic solution for the swing equation was derived in a linear system with limited load types, this study introduces two fundamental novelties: 1) the innovative examination and modeling of the ZIP load model, successfully integrating constant current loads to augment constant impedance and constant power loads; 2) the unique derivation of voltage variables in relation to rotor angles employing the holomorphic embedding (HE) method and the Padé approximation.
Objective: The objectives of this paper are to 1) construct a new network model compatible with distributed computation, 2) construct the full optimal power flow (OPF) in a distributed fashion so that an effective, non-inferior solution can be found, and 3) develop a scalable algorithm that guarantees the convergence to a local minimum.
Existing Challenges: Due to the nonconvexity of the problem, the search for a solution to OPF problems is not scalable, which makes the OPF highly limited for the system operation of large-scale real-world power grids-"the curse of dimensionality". The recent attempts at distributed computation aim for a scalable and efficient algorithm by reducing the computational cost per iteration in exchange of increased communication costs.
Objective: To derive a closed-form analytical solution to the swing equation describing the power system dynamics, which is a nonlinear second order differential equation.
Existing Challenges: No analytical solution to the swing equation has been identified, due to the complex nature of power systems. Two major approaches are pursued for stability assessments on systems: (1) computationally simple models based on physically unacceptable assumptions, and (2) digital simulations with high computational costs.
Rank-1 modifications applied -times ( 1) often are performed to achieve a rank- modification. We propose a rank- modification for enhancing computational efficiency. As the first step toward a rank- modification, an algorithm to perform a rank-2 modification is proposed and tested.
View Article and Find Full Text PDF