Objective: To investigate genetic correlation between calving ease (CE) and gestation length (GL) traits of Korean Holstein cattle to understand genetic structures of these two traits and their potential implications.
Methods: Records of progenies from first parity (P1, N=117,921) and second parity (P2, N=141,104) Holsteins cows were used for analysis. All phenotypes (CE and GL) were considered as calf traits.
Objective: In Korea, dairy cattle breeding programs have historically prioritized productive, conformation traits, leading to positive improvements, yet reproductive traits have lagged in development. This study was conducted to develop the breeding program of key reproductive traits in the Korean dairy cattle population.
Methods: Utilizing data from 7,596 farms and over seven million observations, we conducted quality control to rectify manual entry errors and selected traits in line with international genetic evaluation standards.
The Holstein breed is the mainstay of dairy production in Korea. In this study, we evaluated the genomic prediction accuracy for body conformation traits in Korean Holstein cattle, using a range of π levels (0.75, 0.
View Article and Find Full Text PDFLow-temperature processed printed silver electrodes pave the way for electrical connections in flexible substrates with reduced energy consumption. Despite their excellent performance and simple process, printed silver electrodes' poor stability limits their applications. This study demonstrates a transparent protective layer without thermal annealing for printed silver electrodes, which maintains its electrical properties for a long period of time.
View Article and Find Full Text PDFThe stability of methylammonium (MA)-based perovskite solar cells (PSCs) remains one of the most urgent issues that need to be addressed. Inherent weak binding forces between MAs and halides cause the perovskite structure to become unstable under exposure to various external environmental factors such as moisture, oxygen, ultraviolet radiation, and heat. In particular, the degradation of perovskite films under light exposure accelerates the deterioration of the device, mainly due to the migration of halide ions.
View Article and Find Full Text PDFPremature aging of perovskite solar cells (PSC) is one of the biggest challenges for its commercialization. Particularly, PSCs exhibit rapid degradation of photovoltaic parameters under ambient air exposure. To estimate the degradation mechanism of PSC under air exposure, we systematically analyzed the relationship between electrical traps of the PSC and its degradation.
View Article and Find Full Text PDFWe demonstrate the improvement in the efficiency of planar heterojunction perovskite solar cells by employing cadmium selenide tetrapods (CdSe TPs) as an electron extraction layer. The insertion of the CdSe TP layer between the titanium oxide (TiO) and perovskite film facilitates electron transfer at the TiO/perovskite interface, as indicated by the significantly quenched steady-state photoluminescence of the perovskite film. Furthermore, we observed a conductivity enhancement of the perovskite film by introducing the CdSe TP layer.
View Article and Find Full Text PDFLuminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for photovoltaic devices. An important LSC characteristic is a concentration factor (C), which is defined as the ratio of the output and the input photon flux densities. This parameter can be also thought of as an effective enlargement factor of a solar cell active area.
View Article and Find Full Text PDFThe use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, II-VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands.
View Article and Find Full Text PDFIn this study, we investigated the effect of the donor/acceptor mixing ratio and the substrate temperature (T(SUB)) during the co-deposition process on the performance of bulk heterojunction organic photovoltaic cells. We found that the ratio of dispersed donor islands (less than 10 nm), which hinders charge carrier transport, increased as the donor concentration (C(D)) increased in the film processed at room temperature. By contrast, the donor cluster (larger than 10 nm), providing percolation paths for the carriers, was enlarged in the film containing a high C(D) fabricated at high T(SUB) (70 degrees C).
View Article and Find Full Text PDFIn this work, we demonstrate enhancement in the short-circuit current of inverted organic photovoltaic cells (OPVs) using a p-type optical spacer. The p-type optical spacer, which consists of molybdenum oxide (MoO(x))-doped 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), shows improved transmittance at visible light with high electrical conductivity. The electrical field distribution of incident light at the active layer of OPVs can be controlled by tuning the thickness of the optical spacer in the OPVs.
View Article and Find Full Text PDFAsian-Australas J Anim Sci
August 2016
Carcass and price traits of 72,969 Hanwoo cows, bulls and steers aged 16 to 80 months at slaughter collected from 2002 to 2013 at 75 beef packing plants in Korea were analyzed to determine heritability, correlation and breeding value using the Multi-Trait restricted maximum likelihood (REML) animal model procedure. The traits included carcass measurements, scores and grades at 24 h postmortem and bid prices at auction. Relatively high heritability was found for maturity (0.
View Article and Find Full Text PDFWe demonstrate that nanocrystalline Al-doped zinc oxide (n-AZO) thin film used as an electron-extraction layer can significantly enhance the performance of inverted polymer solar cells based on the bulk heterojunction of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and [6,6]-phenyl C(71)-butyric acid methyl ester (PC(70)BM). A synergistic study with both simulation and experiment on n-AZO was carried out to offer a rational guidance for the efficiency improvement. As a result, An n-AZO film with an average grain size of 13 to 22 nm was prepared by a sol-gel spin-coating method, and a minimum resistivity of 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2015
We report a unique nanostructured electron-selective interlayer comprising of In-doped ZnO (ZnO:In) and vertically aligned CdSe tetrapods (TPs) for inverted polymer:fullerene bulkheterojunction (BHJ) solar cells. With dimension-controlled CdSe TPs, the direct inorganic electron transport pathway is provided, resulting in the improvement of the short circuit current and fill factor of devices. We demonstrate that the enhancement is attributed to the roles of CdSe TPs that reduce the recombination losses between the active layer and buffer layer, improve the hole-blocking as well as electron-transporting properties, and simultaneously improve charge collection characteristics.
View Article and Find Full Text PDFHigh efficiency inverted organic solar cells are fabricated using the PTB7:PC71BM polymer by incorporating Zn-doped TiO2 (ZTO) and 0.05 wt% PEO:ZTO as interfacial electron transport layers. The 0.
View Article and Find Full Text PDFWe report the effect of a nanobump assembly (NBA) constructed with molybdenum oxide (MoO3) covering Ag nanoparticles (NPs) under the active layer on the efficiency of plasmonic polymer solar cells. Here, the NPs with precisely controlled concentration and size have been generated by an atmospheric evaporation/condensation method and a differential mobility classification and then deposited on an indium tin oxide electrode via room temperature aerosol method. NBA structure is made by enclosing NPs with MoO3 layer via vacuum thermal evaporation to isolate the undulated active layer formed onto the underlying protruded NBA.
View Article and Find Full Text PDFWe studied the origin of the improvement in device performance of thermally evaporated bulk heterojunction organic photovoltaic devices (OPVs) with low donor concentration. Samples with three different donor-acceptor mixing ratios, 0:10 (C70-only), 1:9 (low-doped) and 3:7 (high-doped), were fabricated with 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane (TAPC):C70. The power conversion efficiencies (PCEs) of these samples were 1.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2012
A strategy to fabricate nanostructured poly(3-hexylthiophene) (P3HT) films for organic photovoltaic (OPV) cells by a direct transfer method from a reusable soft replica mold is presented. The flexible polyfluoropolyether (PFPE) replica mold allows low-pressure and low- temperature process condition for the successful transfer of nanostructured P3HT films onto PEDOT/PSS-coated ITO substrates. To reduce the fabrication cost of masters in large area, we employed well-ordered anodic aluminum oxide (AAO) as a template.
View Article and Find Full Text PDF