The aim of this study was to develop docetaxel-incorporated lipid nanoparticles (DTX-NPs) to improve the pharmacokinetic behaviour of docetaxel (DTX) after oral and parenteral administration via sustained release. DTX-NPs were prepared by nanotemplate engineering technique with palmityl alcohol as a solid lipid and Tween-40/Span-40/Myrj S40 as a surfactants mixture. Spherical DTX-NPs below 100 nm were successfully prepared with a narrow particle size distribution, 96% of incorporation efficiency and 686 times increase in DTX solubility.
View Article and Find Full Text PDFThe aim of this study is to investigate in vivo anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel (MTX-UDLs-gel) in adjuvant-induced arthritis rat model. Methotrexate-entrapped ultradeformable liposomes (MTX-UDLs) with the optimal phosphatidylcholine to Tween 80 ratio (7:3, w/w) were incorporated into 1% Carbopol gel. MTX-UDLs-gel was characterized in terms of appearance, clarity, homogeneity, pH and drug content.
View Article and Find Full Text PDFThe purpose of this study was to develop a novel dabigatran etexilate hemisuccinate (DEH) salt-loaded polycap with bioequivalence to the dabigatran etexilate mesylate (DEM)-loaded commercial product. DEH prepared with dabigatran etexilate base (DE) and succinic acid was less hygroscopic but less soluble than DEM. Numerous micronized DEHs and DEH-loaded solid dispersions were prepared employing the spiral jet-milling and spray-drying techniques, respectively.
View Article and Find Full Text PDFThe aim of this study is to investigate methotrexate-entrapped ultradeformable liposomes (MTX-UDLs) for potential transdermal application. MTX-UDLs were prepared by extrusion method with phosphatidylcholine as a bilayer matrix and sodium cholate or Tween 80 as an edge activator. The physicochemical properties of MTX-UDLs were determined in terms of particle size, polydispersity index, zeta potential, and entrapment efficiency.
View Article and Find Full Text PDF