Publications by authors named "Hyung-Hwan Hyun"

Background: Rational engineering studies for deoxycytidine production were initiated due to low intracellular levels and tight regulation. To achieve high-level production of deoxycytidine, a useful precursor of decitabine, genes related to feed-back inhibition as well as the biosynthetic pathway were engineered. Additionally, we predicted the impact of individual gene expression levels on a complex metabolic network by microarray analysis.

View Article and Find Full Text PDF

The development of microbial strains for the enhanced production of α-ketoglutarate (α-KG) was investigated using a strain of Corynebacterium glutamicum that overproduces of l-glutamate, by disrupting three genes involved in the α-KG biosynthetic pathway. The pathways competing with the biosynthesis of α-KG were blocked by knocking out aceA (encoding isocitrate lyase, ICL), gdh (encoding glutamate dehydrogenase, l-gluDH), and gltB (encoding glutamate synthase or glutamate-2-oxoglutarate aminotransferase, GOGAT). The strain with aceA, gltB, and gdh disrupted showed reduced ICL activity and no GOGAT and l-gluDH activities, resulting in up to 16-fold more α-KG production than the control strain in flask culture.

View Article and Find Full Text PDF

Corynebacterium ammoniagenes N424 was metabolically modified to isolate overproducers of deoxycytidine. Inosine auxotrophy (ino) was initially introduced to prevent the flow of PRPP (phosphoribosyl pyrophosphate) into the purine biosynthetic pathway by random mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine. Following that, mutants possessing hydroxyurea resistance (HU(r)) were isolated to increase the activity of ribonucleoside diphosphate reductase, which catalyzes the reduction of ribonucleoside diphosphate to deoxyribonucleoside diphosphate.

View Article and Find Full Text PDF

Thymidine is an important precursor in antiviral drugs. We have enhanced thymidine production in E. coli by eliminating the repressors in the transcription of the gene coding for carbamoyl phosphate synthetase.

View Article and Find Full Text PDF

The mdh gene encodes mannitol dehydrogenase (MDH), which catalyzes the conversion of fructose into mannitol. The putative mdh gene of Candida magnoliae was isolated by PCR using the primers deduced from the N-terminal amino acid sequences of an intact MDH and its tryptic peptides, cloned in E. coli, and sequenced.

View Article and Find Full Text PDF

To enhance the production of micrococcin GO5, a bacteriocin produced by Micrococcus sp. GO5, cultivation conditions and medium composition were optimized. The optimal initial pH and temperature for bacteriocin production were 7.

View Article and Find Full Text PDF

Strain GO5, a bacteriocin-producing bacterium, was isolated from green onion kimchi and identified as Micrococcus sp. The bacteriocin, micrococcin GO5, displayed a broad spectrum of inhibitory activity against a variety of pathogenic and nonpathogenic microorganisms, as tested by the spot-on-lawn method; its activity spectrum was almost identical to that of nisin. Micrococcin GO5 was inactivated by trypsin (whereas nisin was not) and was completely stable at 100 degrees C for 30 min and in the pH range of 2.

View Article and Find Full Text PDF

Mannitol biosynthesis in Candida magnoliae HH-01 (KCCM-10252), a yeast strain that is currently used for the industrial production of mannitol, is catalyzed by mannitol dehydrogenase (MDH) (EC 1.1.1.

View Article and Find Full Text PDF

The most efficient substrate for mannitol production by Candida magnoliae HH-01 is fructose; glucose and sucrose can also be converted into mannitol but with lower conversion yields. Mannitol dehydrogenase was purified and characterized; it had the highest activity with fructose as the substrate and used only NADPH. In fed-batch fermentation with glucose, the production of mannitol from fructose ceased when the glucose was exhausted but it was reinitiated with the addition of glucose, implying that glucose plays an important role in NADPH regeneration.

View Article and Find Full Text PDF

The adenylate kinase (AK) gene from Thermotoga neapolitana, a hyperthermophilic bacterium, was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was biochemically characterized. The T. neapolitana AK (TNAK) sequence indicates that this enzyme belongs to the long bacterial AKs.

View Article and Find Full Text PDF