Publications by authors named "Hyung Jong Jin"

Bacillus halodurans C-125 is an alkaliphilic microorganism that grows best at pH 10 to 10.5. .

View Article and Find Full Text PDF

The construction of completely biocompatible and biodegradable tumor suppressors by a simple and reliable method is essential for the clinical application of cancer-targeted drugs. Herein, by inserting glucose oxidase (GOx), catalase (CAT), and chlorin e6 (Ce6) into human serum albumin (HSA) assembly molecules, we constructed a cancer-targeted cascade bioreactor for synergistic starvation and photodynamic therapy (PDT). The modification of HSA could block the GOx activity and reduce the cytotoxicity of normal cells and organs.

View Article and Find Full Text PDF

Hypoxia is not only the reason of tumor metastasis but also enhances the spread of cancer cells from the original tumor site, which results in cancer recurrence. Herein, we developed a self-assembled RNA hydrogel that efficiently delivered synergistic DNA CpG and short hairpin RNA (shRNA) adjuvants, as well as MnO loaded-photodynamic agent chlorine e6 (MnO@Ce6), and a chemotherapy drug doxorubicin (DOX) into MDA-MB-231cells. The RNA hydrogel consists of one tumour suppressor miRNA (miRNA-205) and one anti-metastatic miRNA (miRNA-182), both of which showed an outstanding effect in synergistically abrogating tumours.

View Article and Find Full Text PDF

Background: Malaria, disproportionately affects poor people more than any other disease of public health concern in developing countries. In resource-constrained environments, monitoring the occurrence of malaria is essential for the success of national malaria control programs. Militancy and military conflicts have been a major challenge in monitoring the incidence and controlling malaria and other emerging infectious diseases.

View Article and Find Full Text PDF

Macrolide-lincosamide-streptogramin B antibiotic resistance occurs through the action of erythromycin ribosome methylation (Erm) family proteins, causing problems due to their prevalence and high minimal inhibitory concentration, and feasibilities have been sought to develop inhibitors. Erms exhibit high conservation next to the N-terminal end region (NTER) as in ErmS, 64SQNF67. Side chains of homologous S, Q and F in ErmC' are surface-exposed, located closely together and exhibit intrinsic flexibility; these residues form a motif X.

View Article and Find Full Text PDF

Biomineralization is a common process in organisms to produce hard biomaterials by combining inorganic ions with biomacromolecules. Multifunctional nanoplatforms are developed based on the mechanism of biomineralization in many biomedical applications. In the past few years, biomineralization-based nanoparticle drug delivery systems for the cancer treatment have gained a lot of research attention due to the advantages including simple preparation, good biocompatibility, degradability, easy modification, versatility, and targeting.

View Article and Find Full Text PDF

Erm proteins methylate a specific adenine residue (A2058, coordinates) conferring macrolide-lincosamide-streptogramin B (MLS) antibiotic resistance on a variety of microorganisms, ranging from antibiotic producers to pathogens. To identify the minimal motif required to be recognized and methylated by the Erm protein, various RNA substrates from 23S rRNA were constructed, and the substrate activity of these constructs was studied using three Erm proteins, namely, ErmB from and ErmE and ErmS from The shortest motif of 15 nucleotides (nt) could be recognized and methylated by ErmS, consisting of A2051 to the methylatable adenine (A2058) and its base-pairing counterpart strand, presumably assuming a quite similar structure to that in 23S rRNA, an unpaired target adenine immediately followed by an irregular double-stranded RNA region. This observation confirms the ultimate end of each side in helix 73 for methylation, determined by the approaches described above, and could reveal the mechanism behind the binding, recognition, induced fit, methylation, and conformational change for product release in the minimal context of substrate, presumably with the help of structural determination of the protein-RNA complex.

View Article and Find Full Text PDF

Erms are proteins that methylate the adenine (A2058) in 23S rRNA, which results in resistance to macrolide, lincosamide, and streptogramin B antibiotics. In a previous report, ErmN appeared to be more susceptible to contaminating proteases in DNase I. To determine the underlying mechanism, cleavage with chymotrypsin over time was investigated.

View Article and Find Full Text PDF

A method was developed to eliminate the proteases contaminating commercial DNase I, which can cause degradation of target protein during the purification process. Bio Basic DNase stock solution (in Tris-HCl buffer [pH 8.0] containing 5mM CaCl2) was first incubated at 50 °C to generate autolysis of proteases and zymogens, leading to a significant reduction in protease activity while preserving DNase activity.

View Article and Find Full Text PDF

It has long been speculated that erm and ksgA are related evolutionarily due to their sequence similarity and analogous catalytic reactions. We performed a comprehensive phylogenetic analysis with extensive Erm and KsgA/Dim1 sequences (Dim1 is the eukaryotic ortholog of KsgA). The tree provides insights into the evolutionary history of erm genes, showing early bifurcation of the Firmicutes and the Actinobacteria, and suggesting that the origin of the current erm genes in pathogenic bacteria cannot be explained by recent horizontal gene transfer from antibiotic producers.

View Article and Find Full Text PDF

The KsgA/Dim1 protein family of rRNA adenine dimethyltransferase (rAD) is well conserved throughout evolution. This protein family has been recognized to play multiple additional roles: as a mitochondrial transcription factor (mtTFB); as a yeast pre-rRNA cleavage enzyme (Dim1p); and as a chloroplast developmental protein (PFC1). Comprehensive phylogenetic analysis of rAD led to three main findings.

View Article and Find Full Text PDF

ErmSF is one of four gene products responsible for the resistance of Streptomyces fradiae to the autogenous antibiotic, tylosin. It catalyzes the methylation of a single adenine residue (A2058) of 23S rRNA to produce dimethyl adenine from monomethyl adenine or unmodified adenine. This reduces the affinity of macrolide-lincosamide-streptogramin B (MLS) antibiotics for the peptidyltransferase circle and confers resistance to these antibiotics.

View Article and Find Full Text PDF

The erm proteins confer resistance to the MLS (macrolide-lincosamide-streptogramin B) antibiotics in various microorganisms, including pathogens, through dimethylation of a single adenine residue (A2085: Bacillus subtilis coordinate) of the 23S rRNA to reduce the affinity of antibiotics, thereby enabling the cells to escape from the antibiotics' action, and this mechanism is predominantly adopted by microorganisms resistant to MLS antibiotics. ErmSF methyltransferase is one of the four gene products synthesized by Streptomyces fradiae NRRL 2338 to be resistant to its autogenous antibiotic, tylosin. In order to have a convenient source for the purification of milligram amounts, we expressed ErmSF in Escherichia coli using a T7 promoter-driven expression vector system, pET 23b, and the protein was expressed with a carboxy-terminal addition of six histidine residues in order to facilitate purification.

View Article and Find Full Text PDF