Publications by authors named "Hyung Jin Chang"

Data-driven deep learning approaches to image registration can be less accurate than conventional iterative approaches, especially when training data is limited. To address this issue and meanwhile retain the fast inference speed of deep learning, we propose VR-Net, a novel cascaded variational network for unsupervised deformable image registration. Using a variable splitting optimization scheme, we first convert the image registration problem, established in a generic variational framework, into two sub-problems, one with a point-wise, closed-form solution and the other one being a denoising problem.

View Article and Find Full Text PDF

In this paper, we present a novel framework for finding the kinematic structure correspondences between two articulated objects in videos via hypergraph matching. In contrast to appearance and graph alignment based matching methods, which have been applied among two similar static images, the proposed method finds correspondences between two dynamic kinematic structures of heterogeneous objects in videos. Thus our method allows matching the structure of objects which have similar topologies or motions, or a combination of the two.

View Article and Find Full Text PDF

In this paper, we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view 2D image sequence. In contrast to prior motion-based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinematic structures with skeletal topology via a successive iterative merging strategy. The iterative merge process is guided by a density weighted skeleton map which is generated from a novel object boundary generation method from sparse 2D feature points.

View Article and Find Full Text PDF
Article Synopsis
  • The STARE method is an innovative approach that uses information theory to improve the detection of multiple structured activities happening at the same time in a scene.* -
  • It allows the system to dynamically focus on the most relevant activity, utilizing the sequence and structure of actions to remain robust even when not all activities are fully observed.* -
  • Key contributions include the development of a dynamic attention framework for efficient activity detection and the creation of a new high-resolution dataset featuring temporally-structured concurrent activities, with experiments showing its effectiveness and accuracy.*
View Article and Find Full Text PDF

In this paper we present a novel framework for simultaneous detection of click action and estimation of occluded fingertip positions from egocentric viewed single-depth image sequences. For the detection and estimation, a novel probabilistic inference based on knowledge priors of clicking motion and clicked position is presented. Based on the detection and estimation results, we were able to achieve a fine resolution level of a bare hand-based interaction with virtual objects in egocentric viewpoint.

View Article and Find Full Text PDF