IEEE Trans Med Imaging
January 2022
Data-driven deep learning approaches to image registration can be less accurate than conventional iterative approaches, especially when training data is limited. To address this issue and meanwhile retain the fast inference speed of deep learning, we propose VR-Net, a novel cascaded variational network for unsupervised deformable image registration. Using a variable splitting optimization scheme, we first convert the image registration problem, established in a generic variational framework, into two sub-problems, one with a point-wise, closed-form solution and the other one being a denoising problem.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2018
In this paper, we present a novel framework for finding the kinematic structure correspondences between two articulated objects in videos via hypergraph matching. In contrast to appearance and graph alignment based matching methods, which have been applied among two similar static images, the proposed method finds correspondences between two dynamic kinematic structures of heterogeneous objects in videos. Thus our method allows matching the structure of objects which have similar topologies or motions, or a combination of the two.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2018
In this paper, we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view 2D image sequence. In contrast to prior motion-based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinematic structures with skeletal topology via a successive iterative merging strategy. The iterative merge process is guided by a density weighted skeleton map which is generated from a novel object boundary generation method from sparse 2D feature points.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2015
IEEE Trans Vis Comput Graph
April 2015
In this paper we present a novel framework for simultaneous detection of click action and estimation of occluded fingertip positions from egocentric viewed single-depth image sequences. For the detection and estimation, a novel probabilistic inference based on knowledge priors of clicking motion and clicked position is presented. Based on the detection and estimation results, we were able to achieve a fine resolution level of a bare hand-based interaction with virtual objects in egocentric viewpoint.
View Article and Find Full Text PDF