AST-001, a novel syrup formulation of L-serine, was developed for the treatment of autism spectrum disorders (ASD) in pediatric patients. This study aimed to establish a pharmacokinetic (PK)-pharmacodynamic (PD) model to elucidate the effect of AST-001 on adaptive behavior in children with ASD. Due to the absence of PK samples in pediatric patients, a previously published population PK model was used to link the PD model by applying an allometric scale to body weight.
View Article and Find Full Text PDF11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) is a key enzyme that catalyzes the intracellular conversion of cortisone to physiologically active cortisol. Although 11βHSD1 has been implicated in numerous metabolic syndromes, such as obesity and diabetes, the functional roles of 11βHSD1 during progression of nonalcoholic steatohepatitis (NASH) and consequent fibrosis have not been fully elucidated. We found that pharmacological and genetic inhibition of 11βHSD1 resulted in reprogramming of hepatic stellate cell (HSC) activation via inhibition of p-SMAD3, α-SMA, Snail, and Col1A1 in a fibrotic environment and in multicellular hepatic spheroids (MCHSs).
View Article and Find Full Text PDFOsimertinib is an irreversible third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that was initially developed to overcome the EGFR T790M mutation and is used as a standard therapy in patients with advanced non-small cell lung cancer (NSCLC) with EGFR-activating mutations. Despite the remarkable initial efficacy, osimertinib, like other EGFR-TKIs, is limited by the emergence of acquired resistance. As the EGFR mutation C797S has been identified as a key driver of acquired resistance to osimertinib, development of a drug that targets this clinically relevant mutation could help improve patient outcomes.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2021
To develop unique small-molecule inhibitors of hepatitis C virus (HCV), thiophen urea (TU) derivatives were synthesised and screened for HCV entry inhibitory activities. Among them, seven TU compounds exhibited portent anti-viral activities against genotypes 1/2 (EC < 30 nM) and subsequently, they were further investigated; based on the pharmacological, metabolic, pharmacokinetic, and safety profiles, was selected as the optimised lead compound as an HCV entry inhibitor. possesses effective multi-genotypic antiviral activity.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is a highly malignant human cancer that has increasing mortality rates worldwide. Because CD133 cells control tumor maintenance and progression, compounds that target CD133 cancer cells could be effective in combating HCC. We found that the administration of chromenopyrimidinone (CPO) significantly decreased spheroid formation and the number of CD133 cells in mixed HCC cell populations.
View Article and Find Full Text PDFResearch studies related to the polymorphs of l-Carnitine orotate (CO), a medication used for the treatment and prevention of liver diseases, are insignificant or almost nonexistent. Accordingly, in the present study, l-Carnitine orotate (CO) was prepared for investigating CO polymorphs. Here, a reactive crystallization was induced by reacting 1g of l-Carn (1 equivalent) and 0.
View Article and Find Full Text PDFBackground: Despite remarkable activity in epidermal growth factor receptor (EGFR)-mutant lung cancer patients, the clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) is limited by the emergence of acquired resistance, which is mostly caused by a secondary T790M mutation. Fortunately, newly developed, mutant-selective EGFR-TKIs against T790M have been proven as an effective therapeutic approach although only osimertinib has received the FDA approval until now.
Objective: To determine the in vitro and in vivo efficacy of a new EGFR TKI, OBX1-012 in cells with mutant EGFR.
Tenofovir disoproxil (TD), an anti-virus drug, is currently marketed under its most stable form, Form-I of Tenofovir disoproxil fumarate (TDF). However, studies regarding the properties of TD free base crystal as a promising drug as well as its crystal structure have not yet been reported. This assumption was made because TD free base is not directly produced in a solid form during the manufacturing process.
View Article and Find Full Text PDFA series of 2-substituted 6-t-butylpyridine and 4-t-butylphenyl C-region analogues of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides were investigated for hTRPV1 antagonism. The analysis of structure activity relationships indicated that the pyridine derivatives generally exhibited a little better antagonism than did the corresponding phenyl surrogates for most of the series. Among the compounds, compound 7 showed excellent antagonism toward capsaicin activation with K=0.
View Article and Find Full Text PDFIonic liquids (ILs) are defined as salts with a melting point below 100 °C. ILs have received increasing attention as new alternative to organic solvents because of their unique physicochemical properties. Therefore, this study was conducted in the purpose to present the efficacy of ILs as new solvents capable to control the Polymorphic transformation phenomenon.
View Article and Find Full Text PDFA series of 2-substituted 4-(trifluoromethyl)benzyl C-region analogs of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides were investigated for hTRPV1 antagonism. The analysis indicated that the phenyl C-region derivatives exhibited better antagonism than those of the corresponding pyridine surrogates for most of the series examined. Among the phenyl C-region derivatives, the two best compounds 43 and 44S antagonized capsaicin selectively relative to their antagonism of other activators and showed excellent potencies with K(i(CAP))=0.
View Article and Find Full Text PDFA series of pyridine derivatives in the C-region of N-((6-trifluoromethyl-pyridin-3-yl)methyl) 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. The SAR analysis indicated that 6-difluorochloromethyl pyridine derivatives were the best surrogates of the C-region for previous leads. Among them, compound 31 showed excellent antagonism to capsaicin as well as to multiple hTRPV1 activators.
View Article and Find Full Text PDFA series of 2-aryl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed highly potent TRPV1 antagonism toward capsaicin comparable to previous lead 7. Among them, compound 9 demonstrated anti-allodynia in a mouse neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner.
View Article and Find Full Text PDFA series of 2-alkyl/alkenyl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed excellent and stereospecific TRPV1 antagonism with better potency than previous lead 2. Among them, compound 15f demonstrated a strong analgesic profile in a rat neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner.
View Article and Find Full Text PDFThe structure activity relationships of 2-oxy pyridine derivatives in the C-region of N-(6-trifluoromethyl-pyridin-3-ylmethyl) 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as hTRPV1 antagonists were investigated. The analysis indicated that the lipophilicity of the 2-oxy substituents was critical for potent antagonism and 4 or 5 carbons appeared to be optimal for activity. Multiple compounds proved to have comparable activity to 1, which had been reported as the most potent antagonist for capsaicin activity among the previous series of compounds.
View Article and Find Full Text PDFA series of N-(2-amino-6-trifluoromethylpyridin-3-ylmethyl)-2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were designed combining previously identified pharmacophoric elements and evaluated as hTRPV1 antagonists. The SAR analysis indicated that specific hydrophobic interactions of the 2-amino substituents in the C-region of the ligand were critical for high hTRPV1 binding potency. In particular, compound 49S was an excellent TRPV1 antagonist (K(i(CAP)) = 0.
View Article and Find Full Text PDFOn the basis of the previous lead N-4-t-butylbenzyl 2-(3-fluoro-4-methylsulfonylaminophenyl) propanamide (3) as a potent TRPV1 antagonist, structure-activity relationships for the B (propanamide part) and C-region (4-t-butylbenzyl part) have been investigated for rTRPV1 in CHO cells. The B-region was modified with dimethyl, cyclopropyl and reverse amides and then the C-region was replaced with 4-substituted phenyl, aryl alkyl and diaryl alkyl derivatives. Among them, compound 50 showed high binding affinity with K(i)=21.
View Article and Find Full Text PDFStructure-activity relationships for the A-region in a series of N-4-t-butylbenzyl 2-(4-methylsulfonylaminophenyl) propanamides as TRPV1 antagonists have been investigated. Among them, the 3-fluoro analogue 54 showed high binding affinity and potent antagonism for both rTRPV1 and hTRPV1 in CHO cells. Its stereospecific activity was demonstrated with marked selectivity for the (S)-configuration (54S versus 54R).
View Article and Find Full Text PDFThe transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1).
View Article and Find Full Text PDFA series of non-vanillyl resiniferatoxin analogues, having 4-methylsulfonylaminophenyl and fluorophenyl moieties as vanillyl surrogates, have been investigated as ligands for rat TRPV1 heterologously expressed in Chinese hamster ovary cells. Although lacking the metabolically problematic 4-hydroxy substituent on the A-region phenyl ring, the compounds retained substantial agonist potency. Indeed, the 3-methoxy-4-methylsulfonylaminophenyl analog (1) was modestly (2.
View Article and Find Full Text PDFA series of bicyclic analogues having indan and tetrahydronaphthalene templates in the A-region were designed as conformationally constrained analogues of our previously reported potent TRPV1 antagonists (1, 3). The activities for rat TRPV1 of the conformationally restricted analogues were moderately or markedly diminished, particularly in the case of the tetrahydronaphthalene analogues. The analysis indicated that steric constraints at the benzylic position in the bicyclic analogues may be an important factor for their unfavorable interaction with the receptor.
View Article and Find Full Text PDFThe transient receptor potential V1 channel (vanilloid receptor, TRPV1) represents a promising therapeutic target for inflammatory pain and other conditions involving C-fiber sensory afferent neurons. Sensitivity of TRPV1 is known to be subject to modulation by numerous signaling pathways, in particular by phosphorylation, and we wished to determine whether TRPV1 structure activity relations could be differentially affected. We demonstrate here that the structure activity relations of TRPV1, as determined by (45)Ca(2) uptake, were substantially altered by treatment of the cells with cyclosporin A, an inhibitor of protein phosphatase 2B.
View Article and Find Full Text PDFPreviously, we reported the thiourea antagonists 2a and 2b as potent and high affinity TRPV1 antagonists. For further optimization of the lead compounds, a series of their amide and alpha-substituted amide surrogates were investigated and novel chiral N-(2-benzyl-3-pivaloyloxypropyl) 2-[4-(methylsulfonylamino)phenyl]propionamide analogues were characterized as potent and stereospecific rTRPV1 antagonists. In particular, compounds 72 and 73 displayed high binding affinities, with K i values of 4.
View Article and Find Full Text PDF