Folliculin (FLCN) is an autosomal dominant tumor suppressor gene that modulates diverse signaling pathways required for growth, proliferation, metabolism, survival, motility, and adhesion. FLCN is an essential protein required for murine embryonic development, embryonic stem cell (ESC) commitment, and Drosophila germline stem cell maintenance, suggesting that Flcn may be required for adult stem cell homeostasis. Conditional inactivation of Flcn in adult hematopoietic stem/progenitor cells (HSPCs) drives hematopoietic stem cells (HSC) into proliferative exhaustion resulting in the rapid depletion of HSPC, loss of all hematopoietic cell lineages, acute bone marrow (BM) failure, and mortality after 40 days.
View Article and Find Full Text PDFBirt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder characterized by cutaneous fibrofolliculomas, pulmonary cysts, and kidney malignancies. Affected individuals carry germ line mutations in folliculin (FLCN), a tumor suppressor gene that becomes biallelically inactivated in kidney tumors by second-hit mutations. Similar to other factors implicated in kidney cancer, FLCN has been shown to modulate activation of mammalian target of rapamycin (mTOR).
View Article and Find Full Text PDFDevelopment of hematopoietic stem cells (HSCs) and their immediate progeny is maintained by the interaction with cells in the microenvironment. We found that hematopoiesis was dysregulated in Id1(-/-) mice. Although the frequency of HSCs in Id1(-/-) bone marrow was increased, their total numbers remained unchanged as the result of decreased bone marrow cellularity.
View Article and Find Full Text PDFInhibitors of DNA binding (Id) family members are key regulators of cellular differentiation and proliferation. These activities are related to the ability of Id proteins to antagonize E proteins and other transcription factors. As negative regulators of E proteins, Id proteins have been implicated in lymphocyte development.
View Article and Find Full Text PDFHematopoietic malignancies are frequently associated with DNA hypomethylation but the molecular mechanisms involved in tumor formation remain poorly understood. Here we report that mice lacking Lsh develop leukemia associated with DNA hypomethylation and oncogene activation. Lsh is a member of the SNF2 chromatin remodeling family and is required for de novo methylation of genomic DNA.
View Article and Find Full Text PDFMouse knockouts of Cdk2 and Cdk4 have demonstrated that, individually, these genes are not essential for viability. To investigate whether there is functional redundancy, we have generated double knockout (DKO) mice. Cdk2-/- Cdk4-/- DKOs die during embryogenesis around E15 as a result of heart defects.
View Article and Find Full Text PDFC/EBPalpha is an essential transcription factor required for myeloid differentiation. While C/EBPalpha can act as a cell fate switch to promote granulocyte differentiation in bipotential granulocyte-macrophage progenitors (GMPs), its role in regulating cell fate decisions in more primitive progenitors is not known. We found increased numbers of erythroid progenitors and erythroid cells in C/EBPalpha(-/-) fetal liver (FL).
View Article and Find Full Text PDFCCAAT enhancer binding protein-alpha (C/EBPalpha) inhibits proliferation in multiple cell types; therefore, we evaluated whether C/EBPalpha-deficient hematopoietic progenitor cells (HPCs) have an increased proliferative potential in vitro and in vivo. In this study we demonstrate that C/EBPalpha(-/-) fetal liver (FL) progenitors are hyperproliferative, show decreased differentiation potential, and show increased self-renewal capacity in response to hematopoietic growth factors (HGFs). There are fewer committed bipotential progenitors in C/EBPalpha(-/-) FL, whereas multipotential progenitors are unaffected.
View Article and Find Full Text PDFAs a part of our continuing efforts to develop gene therapy for acute myelogenous leukemia (AML), this study was undertaken to evaluate the possibility of using autologous bone marrow stromal fibroblasts (BMSFs) as a target cell population. Autologous BMSFs in AML were isolated from the stromal layers of long-term bone marrow culture (LTBMC) using immunomagnetic beads. BMSFs exhibited rapid proliferation even in the absence of growth factors.
View Article and Find Full Text PDF