Entropy (Basel)
January 2023
We establish a fluctuation theorem for an open quantum bipartite system that explicitly manifests the role played by quantum correlation. Generally quantum correlations may substantially modify the universality of classical thermodynamic relations in composite systems. Our fluctuation theorem finds a non-equilibrium parameter of genuinely quantum nature that sheds light on the emerging quantum information thermodynamics.
View Article and Find Full Text PDFWe investigate the quantum thermodynamics of two quantum systems, a two-level system and a four-level quantum photocell, each driven by photon pulses as a quantum heat engine. We set these systems to be in thermal contact only with a cold reservoir while the heat (energy) source, conventionally given from a hot thermal reservoir, is supplied by a sequence of photon pulses. The dynamics of each system is governed by a coherent interaction due to photon pulses in terms of the Jaynes-Cummings Hamiltonian together with the system-bath interaction described by the Lindblad master equation.
View Article and Find Full Text PDFA restricted Boltzmann machine is a generative probabilistic graphic network. A probability of finding the network in a certain configuration is given by the Boltzmann distribution. Given training data, its learning is done by optimizing the parameters of the energy function of the network.
View Article and Find Full Text PDFWe study an arbitrary nonequilibrium dynamics of a quantum bipartite system coupled to a reservoir. For its characterization, we present a fluctuation theorem (FT) that explicitly addresses the quantum correlation of subsystems during the thermodynamic evolution. To our aim, we designate the local and the global states altogether in the time-forward and the time-reversed transition probabilities.
View Article and Find Full Text PDFWe propose entropic nonclassicality criteria for quantum states of light that can be readily tested using homodyne detection with beam splitting operation. Our method draws on the fact that the entropy of quadrature distributions for a classical state is non-increasing under an arbitrary loss channel. We show that our test is strictly stronger than the variance-based squeezing condition and that it can also be extended to detect quantum non-Gaussianity in conjunction with phase randomization.
View Article and Find Full Text PDFWe derive an entropic uncertainty relation for generalized positive-operator-valued measure (POVM) measurements via a direct-sum majorization relation using Schur concavity of entropic quantities in a finite-dimensional Hilbert space. Our approach provides a significant improvement of the uncertainty bound compared with previous majorization-based approaches (Friendland, S.; Gheorghiu, V.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2017
A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis.
View Article and Find Full Text PDFWe study the sensitivity of phase estimation using a generic class of path-symmetric entangled states |φ〉|0〉 + |0〉|φ〉, where an arbitrary state |φ〉 occupies one of two modes in quantum superposition. With this generalization, we identify the fundamental limit of phase estimation under energy constraint that is characterized by the photon statistics of the component state |φ〉. We show that quantum Cramer-Rao bound (QCRB) can be indefinitely lowered with super-Poissonianity of the state |φ〉.
View Article and Find Full Text PDFQuantum steering-a strong correlation to be verified even when one party or its measuring device is fully untrusted-not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuous-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfilment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts.
View Article and Find Full Text PDFSingle-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization.
View Article and Find Full Text PDFWe theoretically propose and experimentally demonstrate a nonclassicality test of a single-mode field in phase space, which has an analogy with the nonlocality test proposed by Banaszek and Wódkiewicz [Phys. Rev. Lett.
View Article and Find Full Text PDFWe propose two experimental schemes that can produce an arbitrary photon-number entangled state (PNES) in a finite dimension. This class of entangled states naturally includes non-Gaussian continuous-variable (CV) states that may provide some practical advantages over the Gaussian counterparts (two-mode squeezed states). We particularly compare the entanglement characteristics of the Gaussian and the non-Gaussian states in view of the degree of entanglement and the Einstein-Podolsky-Rosen correlation, and further discuss their applications to the CV teleportation and the nonlocality test.
View Article and Find Full Text PDFWe present a formalism to derive entanglement criteria beyond the Gaussian regime that can be readily tested by only homodyne detection. The measured observable is the Einstein-Podolsky-Rosen (EPR) correlation. Its arbitrary functional form enables us to detect non-Gaussian entanglement even when an entanglement test based on second-order moments fails.
View Article and Find Full Text PDFWe derive two classes of multimode Bell inequalities under local realistic assumptions, which are violated only by the entangled states negative under partial transposition in accordance with the Peres conjecture. Remarkably, the failure of local realism can be manifested by exploiting wave and particle correlations of readily accessible continuous-variable states, with very large violation of inequalities insensitive to detector efficiency, which makes a strong case for a loophole-free test.
View Article and Find Full Text PDFStrong correlation of photons, particularly in the single-photon regime, has recently been exploited for various applications in quantum information processing. Existing correlation measurements, however, do not fully characterize multi-photon correlation in a relevant context and may pose limitations in practical situations. We propose a conceptually rigorous, but easy-to-implement, criterion for detecting correlated multi-photon emission out of a quantum optical system, drawn from the context of wavefunction collapse.
View Article and Find Full Text PDFA scheme for the teleportation of a beam of light including its temporal fluctuations is proposed. Expressions for the teleported degrees of first- and second-order optical coherence are presented. Teleportation of an antibunched photon stream illustrates the proposal.
View Article and Find Full Text PDFPhys Rev Lett
September 2008
In this Letter, we show that the fulfillment of uncertainty relations is a sufficient criterion for a quantum-mechanically permissible state. We specifically construct two pseudospin observables for an arbitrary nonpositive Hermitian matrix whose uncertainty relation is violated. This method enables us to systematically derive separability conditions for all negative partial-transpose states in experimentally accessible forms.
View Article and Find Full Text PDFPhys Rev Lett
September 2004
The degree of entanglement in an open quantum system varies according to how information in the environment is read. A measure of this contextual entanglement is introduced based on quantum trajectory unravelings of the open system dynamics. It is used to characterize the entanglement in a driven quantum system of dimension 2 x infinity where the entanglement is induced by the environmental interaction.
View Article and Find Full Text PDFWe propose a test of nonlocality for continuous variables using a two-mode squeezed state as the source of nonlocal correlations and a measurement scheme based on conditional homodyne detection. Both the Clauser-Horne-Shimony-Holt and the Clauser-Horne inequality are constructed from the conditional homodyne data and found to be violated for a squeezing parameter larger than r approximately 0.48.
View Article and Find Full Text PDF