Purpose: Histone deacetylase inhibitors (HDACis) are epigenetic regulators and used clinically for hematopoietic malignancies. Recently, HDACis have received attention as a factor that modulates the immune system. In this study, the role of histone deacetylase (HDAC) expression as a predictive marker in lung cancer patients who were treated with immune checkpoint inhibitors (ICIs) and the role of HDACi and ICI combination treatment in the mouse tumor model were analyzed.
View Article and Find Full Text PDFBackground: Endoplasmic reticulum stress has a profound effect on cancer cell proliferation and survival, and also has the capacity to activate cells of the adaptive immune system. Multimodal treatment methods that utilize and combine conventional cancer therapies with antigen-specific immunotherapies have emerged as promising approaches for the treatment and control of cancer. However, it is not well known whether endoplasmic reticulum stress-inducing agents can influence the efficacy of tumor antigen-targeting vaccines.
View Article and Find Full Text PDFIL-23 has been well studied in the context of T cell differentiation; however, its role in the differentiation of myeloid progenitors is less clear. In this paper, we describe a novel role of IL-23 in myeloid cell differentiation. Specifically, we have identified that in human PBMCs, IL-23 induces the expression of MDL-1, a PU.
View Article and Find Full Text PDFDifferentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation.
View Article and Find Full Text PDFBone destruction is a common feature of inflammatory arthritis and is mediated by osteoclasts, the only specialized cells to carry out bone resorption. Aberrant expression of receptor activator of nuclear factor kappa β ligand (RANKL), an inducer of osteoclast differentiation has been linked with bone pathology and the synovial fibroblast in rheumatoid arthritis (RA). In this manuscript, we challenge the current concept that an increase in RANKL expression governs osteoclastogenesis and bone destruction in autoimmune arthritis.
View Article and Find Full Text PDFHuman ribosomal protein S3 (rpS3) acts as a DNA repair endonuclease. The multiple functions of this protein are regulated by post-translational modifications including phosphorylation and methylation. Using a yeast-two hybrid screen, we identified small ubiquitin-related modifier-1 (SUMO-1) as a new interacting partner of rpS3.
View Article and Find Full Text PDFRibosomal protein S3 (RpS3) is a well-known multi-functional protein mainly involved in protein biosynthesis as a member of the small ribosomal subunit. It also plays a role in repairing various DNA damage acting as a repair UV endonuclease. Most of the rpS3 pool is located in the ribosome while the minority exists in free form in the cytoplasm.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2009
The human ribosomal protein S3 (rpS3), a component of the 40S small subunit in the ribosome, is a known multi-functional protein with roles in DNA repair and apoptosis. We recently found that the arginine residue(s) of rpS3 are methylated by protein arginine methyltransferase 1 (PRMT1). In this paper, we confirmed the arginine methylation of rpS3 protein both in vitro and in vivo.
View Article and Find Full Text PDFIt has been shown previously that ribosomal protein S3 (rpS3) has an endonuclease activity, which is increased by protein kinase Cdelta (PKCdelta)-dependent phosphorylation. However, the reciprocal mechanism for rpS3 dephosphorylation is not known. In this study, we examined phosphatases involved in rpS3 dephosphorylation, and we determined that rpS3 is specifically dephosphorylated by protein phosphatase 2A (PP2A).
View Article and Find Full Text PDFNm23-H1 encodes nucleoside diphosphate kinase A (NDPK-A) and is known to have a metastasis suppressive activity in many tumor cells. However, it has many other functions as well. Recent studies have shown that the interacting proteins with Nm23-H1 which mediate the cell proliferation, may act as modulators of the metastasis suppressor activity.
View Article and Find Full Text PDFIn order to develop a highly efficient mammalian expression vector, we constructed a vector by the combination of the murine cytomegalovirus (MCMV) immediate early (IE) promoter and the human elongation factor one alpha (EF-1 alpha) first intron. The MCMV IE promoter was several fold stronger than the human cytomegalovirus (HCMV) immediate early (IE) promoter and the human elongation factor one alpha (EF-1 alpha) promoter in various mammalian cell lines such as NIH3T3, Neuro-2a, 293T or HT1080 and was only slightly weaker than the HCMV or the EF-1 alpha promoter in HeLa and CHO cell lines. We inserted the first intron of the human EF-1 alpha gene behind the MCMV and the HCMV promoter to enhance the gene expression through increasing RNA transcription and/or RNA stability.
View Article and Find Full Text PDF