Publications by authors named "Hyun-Ryoung Kim"

Doxorubicin (DOX) is a representative anticancer drug with a unique ability to induce immunogenic cell death of cancer cells. However, undesired toxicity on immune cells has remained a significant challenge, hindering the usage of DOX in cancer immunotherapy. Here, we report a combined therapy to avoid the off-target toxicity of DOX by adapting ultrasound-responsive liposomal doxorubicin and focused ultrasound exposure.

View Article and Find Full Text PDF

Glioblastoma is considered one of the most aggressive and dangerous brain tumors. However, treatment of GBM has been still challenged due to blood-brain barrier (BBB). BBB prevents that the chemotherapeutic molecules are extravasated to brain.

View Article and Find Full Text PDF

We perform coarse-grained molecular dynamics simulations of bilayers composed of various lipids and cholesterol at their different ratios. Simulations show that cholesterol-lipid interactions restrict the lateral dynamics of bilayers but also promote bilayer curvature, indicating that these opposite effects simultaneously occur and thus cannot significantly influence bilayer stability. In contrast, lyso-lipids effectively pack the vacancy in the bilayer composed of cone-shaped lipids and thus reduce bilayer dynamics and curvature, showing that bilayers are more significantly stabilized by lyso-lipids than by cholesterol, in agreement with experiments.

View Article and Find Full Text PDF

Chemotherapeutic drugs are traditionally used for the treatment of cancer. However, chemodrugs generally induce side effects and decrease anticancer effects due to indiscriminate diffusion and poor drug delivery. To overcome these limitations of chemotherapy, in this study, ultrasound-responsive liposomes were fabricated and used as drug carriers for delivering the anticancer drug doxorubicin, which was able to induce cancer cell death.

View Article and Find Full Text PDF

Because chemotherapeutic drugs are often associated with serious side effects, the central topic in modern drug delivery is maximizing the localization of drugs at the target while minimizing non-specific drug interactions at unwanted regions. To address this issue, biocompatible nanoparticles have been developed to enhance the drug half-life while minimizing the associated toxicity. Nevertheless, relying solely on the enhanced half-life and enhanced permeability and retention (EPR) effects has been ineffective, and designing stimulus-sensitive nanoparticles to introduce the precise control of drug release has been desired.

View Article and Find Full Text PDF

High intensity focused ultrasound (HIFU), allowing for precise heating of the deep and local area, is emerging as the source of mild hyperthermia for delivery of doxorubicin (DOX) using thermosensitive liposomes (TSLs). Conventionally, HIFU has been used for intravascular drug release at tumor tissue by inducing mild hyperthermia immediately upon systemic administration of DOX-TSLs. This immediate heating approach (IHA), however, limits the deep penetration of DOX for high anticancer efficacy.

View Article and Find Full Text PDF

Monitoring of drug release from a heat-activated liposome carrier provides an opportunity for real-time control of drug delivery and allows prediction of the therapeutic effect. We have developed short-chain elastin-like polypeptide-incorporating thermosensitive liposomes (STLs). Here, we report the development of STL encapsulating gadobenate dimeglumine (Gd-BOPTA), a MRI contrast agent, and doxorubicin (Dox) (Gd-Dox-STL).

View Article and Find Full Text PDF

One application of nanotechnology in medicine that is presently being developed involves a drug delivery system (DDS) employing nanoparticles to deliver drugs to diseased sites in the body avoiding damage of healthy tissue. Recently, the mild hyperthermia-triggered drug delivery combined with anticancer agent-loaded thermosensitive liposomes was widely investigated. In this study, thermosensitive liposomes (TSLs), composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG), cholesterol, and a fatty acid conjugated elastin-like polypeptide (ELP), were developed and optimized for triggered drug release, controlled by external heat stimuli.

View Article and Find Full Text PDF

One of the most effective methods to treat cancer is the specific delivery of anticancer drugs to the target site. To achieve this goal, we designed an anticancer drug with mild hyperthermia-mediated triggering and tumor-specific delivery. To enhance the thermosensitive drug release, we incorporated elastin-like polypeptide (ELP), which is known to be a thermally responsive phase transition peptide into the dipalmitoylphosphatidylcholine (DPPC)-based liposome surface.

View Article and Find Full Text PDF

Lipid bilayers, which consist of dipalmitoylglycerophosphocholines (DPPCs), PEGylated lipids, cholesterols, and elastin-like polypeptides (ELPs; [VPGVG]3) at different molar ratios, were simulated. Simulations were carried out for 2 μs using the coarse-grained (CG) model that had captured the experimentally observed phase behavior of PEGylated lipids and lateral diffusivity of DPPC bilayers. Starting with the initial position of ELPs on the bilayer surface, ELPs insert into the hydrophobic region of the bilayer because of their interaction with lipid tails, consistent with previous all-atom simulations.

View Article and Find Full Text PDF

The successful clinical translation of siRNA-based therapeutics requires efficient carrier systems that can specifically deliver siRNA within the cytosol of the target cells. Although numerous polymeric nanocarriers forming ionic complexes with siRNA have been investigated for cancer therapy, their poor stability and lack of tumor targetability have impeded their in vivo applications. To surmount these limitations, we synthesized a novel type of biodegradable hyaluronic acid-graft-poly(dimethylaminoethyl methacrylate) (HPD) conjugate that can form complexes with siRNA and be chemically crosslinked via the formation of the disulfide bonds under facile conditions.

View Article and Find Full Text PDF

We developed a novel temperature-sensitive liposome, STL composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG-2000), cholesterol, and a fatty acid conjugated elastin-like polypeptide (ELP). The STL had a unilamellar spherical shape with a mean diameter of 160 nm. Doxorubicin (DOX) was encapsulated by the STL using an ammonium sulfate gradient method with a lipid to drug ratio of 1:0.

View Article and Find Full Text PDF

Heparin decomplexation experiments, as well as all-atom (AA) and coarse-grained (CG) molecular dynamics (MD) simulations, were performed to determine the effect of the size of arginine(Arg)-rich peptides on the structure and binding strength of the siRNA-peptide complex. At a fixed peptide/siRNA mole ratio of 5:1 or 10:1, the siRNA complexes with peptides longer than nine Arg residues are more easily decomplexed by heparin than are those with nine Arg residues. At these mole ratios, peptides longer than nine Arg residues have cationic/anionic charge ratios in excess of unity, and produce more weakly bound complexes than nine Arg residue ones do.

View Article and Find Full Text PDF

The in vivo stability and tumor targetability of self-assembled polymeric nanoparticles are crucial for effective drug delivery. In this study, to develop biostable nanoparticles with high tumor targetability, poly(ethylene glycol)-conjugated hyaluronic acid nanoparticles (PEG-HANPs) were mineralized through controlled deposition of inorganic calcium and phosphate ions on the nanoparticular shell via a sequential addition method. The resulting nanoparticles (M-PEG-HANPs) had a smaller size (153.

View Article and Find Full Text PDF

Cationic solid lipid nanoparticles (SLN), reconstituted from natural components of protein-free low-density lipoprotein, were used to deliver small interfering RNA (siRNA). The cationic SLN was prepared using a modified solvent-emulsification method. The composition was 45% (w/w) cholesteryl ester, 3% (w/w) triglyceride, 10% (w/w) cholesterol, 14% (w/w) dioleoylphosphatidylethanolamine (DOPE), and 28% (w/w) 3beta-[ N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol (DC-chol).

View Article and Find Full Text PDF

The biodistribution of colloidal carriers after their administration in vivo depends on the adsorption of some plasma proteins and apolipoproteins on their surface. Poly(methoxypolyethyleneglycol cyanoacrylate-co-hexadecylcyanoacrylate) (PEG-PHDCA) nanoparticles have demonstrated their capacity to cross the blood-brain barrier (BBB) by a mechanism of endocytosis. In order to clarify this mechanism at the molecular level, proteins and especially apolipoproteins adsorbed at the surface of PEG-PHDCA nanoparticles were analyzed by complementary methods such as CE and Protein Lab-on-chip in comparison with 2-D PAGE as a method of reference.

View Article and Find Full Text PDF

Cell internalisation and intracellular distribution of PEG-coated polyhexadecylcyanoacrylate (PEG-PHDCA) nanoparticles in rat brain endothelial cells (RBEC) have been investigated. A cell fractionation method has been developed based on the selective permeabilisation of RBEC plasma membrane by digitonin. By interacting with membrane cholesterol, digitonin creates pores allowing the release of soluble and diffusible species outside the cell.

View Article and Find Full Text PDF

Two non-stoichiometric binding sites had previously been characterized for the NK-1 receptor using two different types of radiolabelled analogues of substance P. However, the question remained on their eventual conformational interconversion induced or not by the ligand. In this study, kinetic, saturation, and competition studies using [3H]propionyl[Pro(9)]SP demonstrate the existence of two independent binding components in CHO cells transfected with the human NK-1 receptor, with K(d) values of 0.

View Article and Find Full Text PDF