Herein, we developed a bio-functionalized solution-immersed silicon (SIS) sensor at the single-cell level to identify (), a highly infectious bacterial pathogen responsible for fire blight, which is notorious for its rapid spread and destructive impact on apple and pear orchards. This method allows for ultra-sensitive measurements without pre-amplification or labeling compared to conventional methods. To detect a single cell of , we used Lipopolysaccharide Transporter E (LptE), which is involved in the assembly of lipopolysaccharide (LPS) at the surface of the outer membrane of , as a capture agent.
View Article and Find Full Text PDFWe have developed a membrane filter-assisted cell-based biosensing platform by using a polyester membrane as a three-dimensional (3D) cell culture scaffold in which cells can be grown by physical attachment. The membrane was simply treated with ethanol to increase surficial hydrophobicity, inducing the stable settlement of cells via gravity. The 3D membrane scaffold was able to provide a relatively longer cell incubation time (up to 16 days) as compared to a common two-dimensional (2D) cell culture environment.
View Article and Find Full Text PDFEarly diagnosis of acute myocardial infarction (AMI) significantly reduce the mortality rate and can be achieved via high-sensitive detection of AMI specific cardiac troponin I (cTnI) biomarker. Here, we present normal-incident type solution-immersed silicon (NI-SIS) ellipsometric biosensor, designed for ultra-high sensitive, high-throughput, label-free detection of the target protein. The NI-SIS sensors are equipped with a specially designed prism that maintains the angle of incidence close to the Brewster angle during operation, which significantly reduces SIS noise signals induced by the refractive index fluctuations of the surrounding medium, improves the signal-to-noise ratio, in-results lowers the detection limit.
View Article and Find Full Text PDFBiosens Bioelectron
September 2019
We report on a novel solution immersed silicon (SIS) sensor modified with bio-receptor to detect toluene. To perform this approach, bio-receptor PAS1 which specifically interacts with toluene was chosen as a capture agent for SIS ellipsometric sensing. We constructed wild PAS1 and mutant PAS1 (F46A and F79Y) which are toluene binding-defective.
View Article and Find Full Text PDFAn electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system.
View Article and Find Full Text PDFHighly sensitive solution immersed silicon (SIS) biosensors were developed for detection of hepatitis B virus (HBV) infection in the early stage. The ultrasensitivity for overlayer thickness at the nonreflecting condition for the p-polarized wave is the basis of SIS sensing technology. The change in thickness due to biomolecular interactions and change in refractive index of the surrounding buffer medium were assessed simultaneously using two separate ellipsometric parameters (Ψ and Δ), respectively, from a single sensing spot.
View Article and Find Full Text PDFWe present for the first time a universal expression for the combined standard uncertainty for all types of rotating-element spectroscopic ellipsometers (RE-SEs). Specifically, we introduce general model functions as universal analytic expressions for the combined standard uncertainties of the ellipsometric sample parameters. The model functions are expressed as functions of influencing quantities that are not known exactly.
View Article and Find Full Text PDFBiosens Bioelectron
January 2017
Acute myocardial infarction (MI) is the leading cause of high mortality and morbidity rate worldwide, early and accurate diagnosis can increase the chances of survival. In this work, we report a simple, ultrasensitive, label-free, and high-throughput solution immersed silicon (SIS) immunosensor based on non-reflection condition (NRC) for p-polarized wave for early diagnosis of MI. SIS sensor chips are just a thin dielectric polymer layer on the silicon surface, which can be functionalized for specific application.
View Article and Find Full Text PDFAlthough label-free immunosensors based on, for example, surface plasmon resonance (SPR) provide advantages of real-time monitoring of the analyte concentration, its application to routine clinical analysis in a semi-continuous manner is problematic because of the high cost of the sensor chip. The sensor chip is in most cases regenerated by employing an acidic pH. However, this causes gradual deterioration of the activity of the capture antibody immobilized on the sensor surface.
View Article and Find Full Text PDFWe obtain the universal evaluations and expressions of measuring uncertainty for all types of rotating-element spectroscopic ellipsometers. We introduce a general data-reduction process to represent the universal analytic functions of the combined standard uncertainties of the ellipsometric sample parameters. To solve the incompleteness of the analytic expressions, we formulate the estimated covariance for the Fourier coefficient means extracted from the radiant flux waveform using a new Fourier analysis.
View Article and Find Full Text PDFThis paper describes a Stokes vector measurement method based on a snapshot polarization-sensitive spectral interferometry. We measure perpendicular linearly polarized complex wave information of an anisotropic object in the spectral domain from which an accurate Stokes vector can be extracted. The proposed Stokes vector measurement method is robust to the object plane 3-D pose variation and external noise, and it provides a reliable snapshot solution in numerous spectral polarization-related applications.
View Article and Find Full Text PDFTo attain early diagnosis of acute myocardial infarction (AMI) with enhanced accuracy, continuous immunosensing has been investigated to measure myoglobin concentration in real-time. To this end, a capture antibody showing rapid reaction kinetics was immobilized on the surface of a surface plasmon resonance sensor. Three problems associated with the continuous sensing of myoglobin in human serum needed to be overcome: non-specific binding of the analyte, aggregation of serum components, and drift of the sensor baseline.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
July 2013
We developed a multichannel three-polarizer spectroscopic ellipsometer based on a data acquisition algorithm for achieving optimized precision. This algorithm measures unnormalized Fourier coefficients accurately and precisely. Offset angles for optical elements were obtained as wavelength-independent values using regression calibration.
View Article and Find Full Text PDFSpectroscopic ellipsometry is one of the most important measurement schemes used in the optical nano-metrology for not only thin film measurement but also nano pattern 3D structure measurement. In this paper, we propose a novel snap shot phase sensitive normal incidence spectroscopic ellipsometic scheme based on a double-channel spectral carrier frequency concept. The proposed method can provide both Ψ(λ) and Δ(λ) only by using two spectra acquired simultaneously through the double spectroscopic channels.
View Article and Find Full Text PDFThe interaction of cells with extracellular matrix, termed cell-matrix adhesions, importantly governs multiple cellular phenomena. Knowledge of the functional dynamics of cell-matrix adhesion could provide critical clues for understanding biological phenomena. We developed surface plasmon resonance imaging ellipsometry (SPRIE) to provide high contrast images of the cell-matrix interface in unlabeled living cells.
View Article and Find Full Text PDFWe introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions.
View Article and Find Full Text PDFAn ellipsometric data acquisition method is introduced to measure the optical properties of sample. It is based on a microellipsometer hardware layout integrated a high numerical aperture objective lens, which is aligned in the normal direction of sample surface. This technique enables to achieve ellipsometric data at multiple incident angle with a sub-mum probe beam size, moreover real-time measurement is possible due to no moving parts.
View Article and Find Full Text PDF