Publications by authors named "Hyun-Ki Min"

Exosomes are nanosized extracellular vesicles secreted by various cell types, including those of the immune system, such as natural killer (NK) cells. They play a role in intercellular communication by transporting signal molecules between the cells. Recent studies have reported that NK cell-derived exosomes (NK-exo) contain cytotoxic proteins-induced cell death.

View Article and Find Full Text PDF

Macrophages (MΦs) have the capability to sense chemotactic cues and to home tumors, therefore presenting a great approach to engineer these cells to deliver therapeutic agents to treat diseases. However, current cell-based drug delivery systems usually use commercial cell lines that may elicit an immune response when injected into a host animal. Furthermore, premature off-target drug release also remains an enormous challenge.

View Article and Find Full Text PDF

The demethylation of histone lysine residues, one of the most important modifications in transcriptional regulation, is associated with various physiological states. KDM2B is a demethylase of histones H3K4, H3K36, and H3K79 and is associated with the repression of transcription. Here, we present a novel mechanism by which KDM2B demethylates serum response factor (SRF) K165 to negatively regulate muscle differentiation, which is counteracted by the histone methyltransferase SET7.

View Article and Find Full Text PDF

We described a magnetic chitosan microscaffold tailored for applications requiring high biocompatibility, biodegradability, and monitoring by real-time imaging. Such magnetic microscaffolds exhibit adjustable pores and sizes depending on the target application and provide various functions such as magnetic actuation and enhanced cell adhesion using biomaterial-based magnetic particles. Subsequently, we fabricated the magnetic chitosan microscaffolds with optimized shape and pore properties to specific target diseases.

View Article and Find Full Text PDF

Although great efforts have been undertaken to develop a nanoparticle-based drug delivery system (DDS) for the treatment of solid tumors, the therapeutic outcomes are still limited. Immune cells, which possess an intrinsic ability to phagocytose nanoparticles and are recruited by tumors, can be exploited to deliver nanotherapeutics deep inside the tumors. Photothermal therapy using near-infrared light is a promising noninvasive approach for solid tumor ablation, especially when combined with chemotherapy.

View Article and Find Full Text PDF

Nanorobots are safe and exhibit powerful functionalities, including delivery, therapy, and diagnosis. Therefore, they are in high demand for the development of new cancer therapies. Although many studies have contributed to the progressive development of the nanorobot system for anticancer drug delivery, these systems still face some critical limitations, such as potentially toxic materials in the nanorobots, unreasonable sizes for passive targeting, and the lack of several essential functions of the nanorobot for anticancer drug delivery including sensing, active targeting, controlling drug release, and sufficient drug loading capacity.

View Article and Find Full Text PDF

After the publication of this article, the authors noticed an error in one of the grant numbers (2015R1A2A1A05001708) in the Acknowledgements section.

View Article and Find Full Text PDF

Aims: Previously, we reported that phosphorylation of histone deacetylase 2 (HDAC2) and the resulting activation causes cardiac hypertrophy. Through further study of the specific binding partners of phosphorylated HDAC2 and their mechanism of regulation, we can better understand how cardiac hypertrophy develops. Thus, in the present study, we aimed to elucidate the function of one such binding partner, heat shock protein 70 (HSP70).

View Article and Find Full Text PDF

An effective nanoparticle-based drug delivery platform holds great promise for non-invasive cancer therapy. This study explores the breast tumor regression in vivo by synergistic photothermal-chemotherapy based on liposomal nanocomplex (folic acid-gold nanorods-anticancer drug-liposome). The proposed liposomal nanocomplex can enhance the tumor targeting by functionalizing folic acid (FA) molecules on the surface of liposome that encapsulates both gold nanorods (AuNRs) and the doxorubicin (DOX) to combine the photothermal therapy and the chemotherapy, respectively.

View Article and Find Full Text PDF

Cardiac hypertrophy occurs in response to increased hemodynamic demand and can progress to heart failure. Identifying the key regulators of this process is clinically important. Though it is thought that the phosphorylation of histone deacetylase (HDAC) 2 plays a crucial role in the development of pathological cardiac hypertrophy, the detailed mechanism by which this occurs remains unclear.

View Article and Find Full Text PDF

Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst.

View Article and Find Full Text PDF

The BMB Reports would like to correct in the ACKNOWLEDGEMENTS of BMB Rep. 45(12), 713-718 titled "Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells".

View Article and Find Full Text PDF

Rotator cuff tear is a common musculoskeletal disease that often requires surgical repair. Despite of recent advances in surgical techniques, the re-tear rate of the rotator cuff tendon is very high. In this study, a platelet-derived growth factor-BB (PDGF-BB)-immobilized asymmetrically porous membrane was fabricated to investigate the feasibility for enhancing rotator cuff tendon regeneration through the membrane.

View Article and Find Full Text PDF

Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC.

View Article and Find Full Text PDF

Rationale: Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA-binding domain. Through interactions with other transcription factors, SHP regulates diverse biological events, including glucose metabolism in liver. However, the role of SHP in adult heart diseases has not yet been demonstrated.

View Article and Find Full Text PDF

Rationale: Histone deacetylases (HDACs) are closely involved in cardiac reprogramming. Although the functional roles of class I and class IIa HDACs are well established, the significance of interclass crosstalk in the development of cardiac hypertrophy remains unclear.

Objective: Recently, we suggested that casein kinase 2α1-dependent phosphorylation of HDAC2 leads to enzymatic activation, which in turn induces cardiac hypertrophy.

View Article and Find Full Text PDF

Polycaprolactone (PCL)/Pluronic F127 membrane with reverse gradients of dual platelet-derived growth factor-β (PDGF-BB) and bone morphogenetic protein 2 (BMP-2) concentrations was fabricated using a diffusion method to investigate the effect of reverse gradients of dual growth factor concentrations on adipose-derived stem cell (ASC) differentiations, such as tenogenesis and osteogenesis. The PDGF-BB and BMP-2 were continuously released from the membrane for up to 35 days, with reversely increasing/decreasing growth factors along the membrane length. Human ASCs were seeded on the membrane with reverse PDGF-BB and BMP-2 gradients.

View Article and Find Full Text PDF

Gangliosides are ubiquitous components of the membranes of mammalian cells that are thought to play important roles in various cell functions such as cell-cell interaction, cell adhesion, cell differentiation, growth control, and signaling. However, the role that gangliosides play in the immune rejection response after xenotransplantation is not yet clearly understood. In this study, the regulatory effects of human leukocytes on ganglioside expression in primary cultured micro-pig aortic endothelial cells (PAECs) were investigated.

View Article and Find Full Text PDF

Gangliosides play important roles in the control of several biological processes, including proliferation and transmembrane signaling. In this study, we demonstrate the effect of ganglioside GM1 on the proliferation of mouse induced pluripotent stem cells (miPSCs). The proliferation rate of miPSCs was lower than in mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

The coupling of autophagy and endoplasmic reticulum (ER) stress has been implicated in a variety of biological processes; however, little is known regarding the involvement of the autophagy/ER stress pathway in early embryogenesis or the underlying mechanism(s). Here, we showed that the developmental competence of in vitro-produced (IVP) bovine embryos was highly dependent on the autophagy/ER stress balance. Although relative abundances of autophagy-associated gene transcripts, including LC3, Atg5, and Atg7 transcripts, were high in oocytes and throughout the early stages of preattachment development, extensive autophagosome formation was only detected in fertilized embryos.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona6tgh74gdqprh40koq7439tp06q9ct65): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once