Background: A species of the fungal genus Cordyceps has been used as a complementary and alternative medicine of traditional Chinese medicine, and its major component cordycepin and cordycepin-enriched WIB-801CE are known to have antiplatelet effects in vitro. However, it is unknown whether they have also endogenous antiplatelet and antithrombotic effects. In this study, to resolve these doubts, we prepared cordycepin-enriched WIB-801CE, an ethanol extract from Cordyceps militaris-hypha, then evaluated its ex vivo, in vivo, and in vitro antiplatelet and antithrombotic effects.
View Article and Find Full Text PDFIn this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordycepin (W-cordycepin) from CE-WIB801C on the inhibition of collagen-induced platelet aggregation. CE-WIB801C and cordycepin stimulated the phosphorylation of VASP (Ser(157)) and the dephosphorylation of PI3K and Akt, and inhibited the binding of fibrinogen to glycoprotein IIb/IIIa (αIIb/β3) and the release of ATP and serotonin in collagen-induced platelet aggregation.
View Article and Find Full Text PDFIn this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its IC50 value was 175 μg/ml. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated [Ca(2+)]i mobilization and thromboxane A2 (TXA2) production.
View Article and Find Full Text PDFIn this study, we investigated the effect of cordycepin-enriched (CE)-WIB801C from Cordyceps militaris on ADP (20 µM)-stimulated platelet aggregation. CE-WIB801C dose-dependently inhibited ADP-induced platelet aggregation, and its IC50 value was 18.5 μg/mL.
View Article and Find Full Text PDFAim: In this study, we investigated the effects of caffeic acid (CAFA), a phenolic acid, on Ca(2+)-antagonistic cyclic nucleotides associated with the phosphorylation of inositol 1,4,5-trisphosphate receptor (IP3R) and vasodilator-stimulated phosphoprotein (VASP) and the thromboxane A2 (TXA2)-associated microsomal cyclooxygenase-1 (COX-1) activity in collagen (10 μg/mL)-stimulated platelet aggregation.
Methods: Washed platelets (10(8)/mL) obtained from Sprague-Dawley rats (6-7 weeks old, male) were preincubated for 3 minutes at 37℃ in the presence of 2 mM exogenous CaCl2 with or without CAFA or other materials, stimulated with collagen (10 μg/mL) for 5 minutes, then used to determine the levels of intracellular cytosolic Ca(2+) ([Ca(2+)]i), TXA2, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), COX-1 activity, VASP and IP3R phosphorylation.
Results: CAFA dose-dependently inhibited collagen-induced platelet aggregation and suppressed the production of TXA2, an aggregation-inducing autacoid associated with the strong inhibition of COX-1 in platelet microsomes exhibiting cytochrome C reductase activity.
In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins from green tea leaves, on activities of cyclooxygenase (COX)-1 and thromboxane synthase (TXAS), thromboxane A2 (TXA2) production associated microsomal enzymes. EGCG inhibited COX-1 activity to 96.9%, and TXAS activity to 20% in platelet microsomal fraction having cytochrome c reductase (an endoplasmic reticulum marker enzyme) activity and expressing COX-1 (70 kDa) and TXAS (58 kDa) proteins.
View Article and Find Full Text PDFIn this study, we have investigated the effects of total saponin from Korean red ginseng (TSKRG) on thrombin-induced platelet aggregation. TSKRG dose-dependently inhibited thrombin-induced platelet aggregation with IC50 value of about 81.1 μg/mL.
View Article and Find Full Text PDFNF-κB expression and activity are strictly regulated in gut epithelia to prevent overstimulation of pro-inflammatory responses following exposure to commensal bacteria. The effects of epithelial EGR-1 on responses to bacterial NF-κB-activating lipopolysaccharide (LPS) in intestinal epithelial cells under ribosomal stress were assessed. This was done to determine the potential of EGR-1 as a modulator of epithelial NF-κB signaling.
View Article and Find Full Text PDFExcessive and persistent insults during endoplasmic reticulum (ER) stress lead to apoptotic cell death that is implicated in a range of chronic inflammatory diseases and cancers. Macrophage inhibitory cytokine 1 (MIC-1), a member of the transforming growth factor-β superfamily, is diversely linked to the pathogenesis of cancer. To investigate the precise molecular mechanisms of MIC-1 gene regulation, ER stress and its related signals were studied in human colon cancer cells.
View Article and Find Full Text PDFJ Atheroscler Thromb
September 2012
Aim: In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG) on cyclic nucleotide production and vasodilator-stimulated phosphoprotein (VASP) phosphorylation in collagen (10 µg/mL)-stimulated platelet aggregation.
Methods: Washed platelets (10(8)/mL) from Sprague-Dawley rats (6-7 weeks old, male) were preincubated for 3 min at 37°C in the presence of 2 mM exogenous CaCl(2) with or without EGCG or other materials, stimulated with collagen (10 µg/mL) for 5 min, and then used for the determination of intracellular cytosolic Ca(2+) ([Ca(2+)](i)), thromboxane A(2) (TXA(2)), adenosine 3',5'-cyclic monophosphate (cAMP), guanosine 3',5'-cyclic monophosphate (cGMP), and VASP phosphorylation.
Results: EGCG dose-dependently inhibited collagen-induced platelet aggregation by inhibiting both [Ca(2+)](i) mobilization and TXA(2) production.