Publications by authors named "Hyun Yong Yu"

Artificial synapses for neuromorphic computing have been increasingly highlighted, owing to their capacity to emulate brain activity. In particular, solid-state electrolyte-gated electrodes have garnered significant attention because they enable the simultaneous achievement of outstanding synaptic characteristics and mass productivity by adjusting proton migration. However, the inevitable interface traps restrict the protons at the channel-electrolyte interface, resulting in the deterioration of synaptic characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • Two-dimensional transition metal dichalcogenides (TMDCs) are being explored as materials for advanced electronics due to their unique electrical and optical properties, but face challenges like strong Fermi-level pinning at contacts that fix their transistor polarity.
  • A new source/drain contact structure using a quasi-zero-dimensional interface helps reduce Fermi-level pinning, allowing for control over the polarity of TMDC field-effect transistors (FETs).
  • The study demonstrated that while traditional metal contacts resulted in n-type behavior, the quasi-0D contact achieved p-type characteristics, significantly improving Schottky barrier height, and offering potential for compatibility with miniaturized device structures.
View Article and Find Full Text PDF

A van der Waals (vdW) α-InSe ferroelectric semiconductor channel-based field-effect transistor (FeS-FET) has emerged as a next-generation electronic device owing to its versatility in various fields, including neuromorphic computing, nonvolatile memory, and optoelectronics. However, screening charges cause by the imperfect surface morphology of vdW α-InSe inhibiting electrical polarization remain an unresolved issue. In this study, for the first time, a method is elucidated to recover the inherent electric polarization in both in- and out-of-plane directions of the α-InSe channel based on post-exfoliation annealing (PEA) and improve the electrical performance of vdW FeS-FETs.

View Article and Find Full Text PDF

Electrolyte-gated transistors have strong potential for high-performance artificial synapses in neuromorphic bio-interfaces owing to their outstanding synaptic characteristics, low power consumption, and human-like mechanisms. However, the short retention time is a hurdle to overcome owing to the natural diffusion of protons. Here, a novel modulation technique of ionic conductivity is proposed with yttria-stabilized hafnia for the first time to enhance the retention characteristic of a solid-state electrolyte-gated transistor-based artificial synapse.

View Article and Find Full Text PDF

Optimizing the contact structure while reducing the contact resistance in advanced transistors has become an extremely challenging problem. Because the existing techniques are limited to controlling only one semiconductor type, either n- or p-type, owing to their work function differences, significant challenges are encountered in the integration of a contact structure and metal suitable for both n- and p-type semiconductors. This is a formidable drawback of the complementary metal-oxide-semiconductor (CMOS) technology.

View Article and Find Full Text PDF

Real-time monitoring of various neurochemicals with high spatial resolution in multiple brain regions in vivo can elucidate neural circuits related to various brain diseases. However, previous systems for monitoring neurochemicals have limitations in observing multiple neurochemicals without crosstalk in real time, and these methods cannot record electrical activity, which is essential for investigating neural circuits. Here, we present a real-time bimodal (RTBM) neural probe that uses monolithically integrated biosensors and multiple shanks to study the connectivity of neural circuits by measuring multiple neurochemicals and electrical neural activity in real time.

View Article and Find Full Text PDF

Negative differential resistance (NDR) based on the band-to-band tunneling (BTBT) mechanism has recently shown great potential in improving the performance of various electronic devices. However, the applicability of conventional BTBT-based NDR devices is restricted by their insufficient performance due to the limitations of the NDR mechanism. In this study, we develop an insulator-to-metal phase transition (IMT)-based NDR device that exploits the abrupt resistive switching of vanadium dioxide (VO) to achieve a high peak-to-valley current ratio (PVCR) and peak current density () as well as controllable peak and valley voltages ().

View Article and Find Full Text PDF

Investigation of the chemical and electrical signals of cells in vivo is critical for studying functional connectivity and brain diseases. Most previous studies have observed either the electrical signals or the chemical signals of cells because recording electrical signals and neurochemicals are done by fundamentally different methods. Herein, we present a bimodal MEMS neural probe that is monolithically integrated with an array of microelectrodes for recording electrical activity, microfluidic channels for sampling extracellular fluid, and a microfluidic interface chip for multiple drug delivery and sample isolation from the localized region at the cellular level.

View Article and Find Full Text PDF

For next-generation electronics and optoelectronics, 2D-layered nanomaterial-based field effect transistors (FETs) have garnered attention as promising candidates owing to their remarkable properties. However, their subthreshold swings () cannot be lower than 60 mV/decade owing to the limitation of the thermionic carrier injection mechanism, and it remains a major challenge in 2D-layered nanomaterial-based transistors. Here, a gate-connected MoS atomic threshold switching FET using a nitrogen-doped HfO-based threshold switching (TS) device is developed.

View Article and Find Full Text PDF

Presently, the 3-terminal artificial synapse device has been in focus for neuromorphic computing systems owing to its excellent weight controllability. Here, an artificial synapse device based on the 3-terminal solid-state electrolyte-gated transistor is proposed to achieve outstanding synaptic characteristics with a human-like mechanism at low power. Novel synaptic characteristics are accomplished by precisely tuning the threshold voltage using the proton-electron coupling effect, which is caused by proton migration inside the electrolyte.

View Article and Find Full Text PDF

The minimal invasiveness of electrocorticography (ECoG) enabled its widespread use in clinical areas as well as in neuroscience research. However, most existing ECoG arrays require that the entire surface area of the brain that is to be recorded be exposed through a large craniotomy. We propose a device that overcomes this limitation, i.

View Article and Find Full Text PDF

2D semiconductor-based ferroelectric field effect transistors (FeFETs) have been considered as a promising artificial synaptic device for implementation of neuromorphic computing systems. However, an inevitable problem, interface traps at the 2D semiconductor/ferroelectric oxide interface, suppresses ferroelectric characteristics, and causes a critical degradation on the performance of 2D-based FeFETs. Here, hysteresis modulation method using self-assembly monolayer (SAM) material for interface trap passivation on 2D-based FeFET is presented.

View Article and Find Full Text PDF

The discovery of ferroelectricity in HfO-based materials in 2011 provided new research directions and opportunities. In particular, for atomic layer deposited HfZrO (HZO) films, it is possible to obtain homogenous thin films with satisfactory ferroelectric properties at a low thermal budget process. Based on experiment demonstrations over the past 10 years, it is well known that HZO films show excellent ferroelectricity when sandwiched between TiN top and bottom electrodes.

View Article and Find Full Text PDF

For increasing the restricted bit-density in the conventional binary logic system, extensive research efforts have been directed toward implementing single devices with a two threshold voltage (VTH) characteristic via the single negative differential resistance (NDR) phenomenon. In particular, recent advances in forming van der Waals (vdW) heterostructures with two-dimensional crystals have opened up new possibilities for realizing such NDR-based tunneling devices. However, it has been challenging to exhibit three VTH through the multiple-NDR (m-NDR) phenomenon in a single device even by using vdW heterostructures.

View Article and Find Full Text PDF

In this study, a near-infrared photodetector featuring a high photoresponsivity and a short photoresponse time is demonstrated, which is fabricated on rhenium diselenide (ReSe) with a relatively narrow bandgap (0.9-1.0 eV) compared to conventional transition-metal dichalcogenides (TMDs).

View Article and Find Full Text PDF

Layered two-dimensional (2D) materials have entered the spotlight as promising channel materials for future optoelectronic devices owing to their excellent electrical and optoelectronic properties. However, their limited photodetection range caused by their wide bandgap remains a principal challenge in 2D layered materials-based phototransistors. Here, we developed a germanium (Ge)-gated MoS phototransistor that can detect light in the region from visible to infrared (λ = 520-1550 nm) using a detection mechanism based on band bending modulation.

View Article and Find Full Text PDF
Article Synopsis
  • The energy barrier at metal/semiconductor interfaces is crucial for the performance of nanoelectronic devices, with challenges in achieving low Schottky barrier heights (SBH) without dependence on contact metals.
  • A novel metal/transition-metal dichalcogenide (TMD) interlayer/dielectric interlayer/semiconductor (MTDS) structure is introduced, utilizing molybdenum disulfide (MoS) for its beneficial interface properties.
  • By adding an ultrathin ZnO layer, the study achieves an ultralow SBH of 0.07 eV and significantly enhances the reverse current density, demonstrating a promising approach for future nanoelectronic applications.
View Article and Find Full Text PDF

With the significant technological developments in recent times, the neuromorphic system has been receiving considerable attention owing to its parallel arithmetic, low power consumption, and high scalability. However, the low reliability of artificial synapse devices disturbs calculations and causes inaccurate results in neuromorphic systems. In this paper, we propose a stable resistive artificial synapse (RAS) device with nitrogen-doped titanium oxide (TiO:N)-based resistive switching (RS) memory.

View Article and Find Full Text PDF

Recently, there have been various attempts to demonstrate the feasibility of transition metal dichalcogenide (TMD) transistors for digital logic circuits. A complementary inverter circuit, which is a basic building block of a logic circuit, was implemented in earlier works by heterogeneously integrating n- and p-channel transistors fabricated on different TMD materials. Subsequently, to simplify the circuit design and fabrication process, complementary inverters were constructed on single-TMD materials using ambipolar transistors.

View Article and Find Full Text PDF

Although molybdenum disulfide (MoS) is highlighted as a promising channel material, MoS-based field-effect transistors (FETs) have a large threshold voltage hysteresis (Δ V) from interface traps at their gate interfaces. In this work, the Δ V of MoS FETs is significantly reduced by inserting a 3-aminopropyltriethoxysilane (APTES) passivation layer at the MoS/SiO gate interface owing to passivation of the interface traps. The Δ V is reduced from 23 to 10.

View Article and Find Full Text PDF

Electrochemical metallization (ECM) threshold switches are in great demand for various applications such as next-generation logic technology, future memory, and neuromorphic computing. However, the instability of operation due to inherent filamentary randomness is a severe problem that is yet to be solved. Here, we propose a specially treated hafnium oxide (HfO :N)-based ECM threshold switch with high reliability, low-voltage operation (0.

View Article and Find Full Text PDF

Schottky barrier height (SBH) engineering of contact structures is a primary challenge to achieve high performance in nanoelectronic and optoelectronic applications. Although SBH can be lowered through various Fermi-level (FL) unpinning techniques, such as a metal/interlayer/semiconductor (MIS) structure, the room for contact metal adoption is too narrow because the work function of contact metals should be near the conduction band edge (CBE) of the semiconductor to achieve low SBH. Here, we propose a novel structure, the metal/transition metal dichalcogenide/semiconductor structure, as a contact structure that can effectively lower the SBH with wide room for contact metal adoption.

View Article and Find Full Text PDF

In the post-Moore era, it is well-known that contact resistance has been a critical issue in determining the performance of complementary metal-oxide-semiconductor (CMOS) reaching physical limits. Conventional Ohmic contact techniques, however, have hindered rather than helped the development of CMOS technology reaching its limits of scaling. Here, a novel conductive filament metal-interlayer-semiconductor (CF-MIS) contact-which achieves ultralow contact resistance by generating CFs and lowering Schottky barrier height (SBH)-is investigated for potential applications in various nanodevices in lieu of conventional Ohmic contacts.

View Article and Find Full Text PDF

The difficulty in Schottky barrier height (SBH) control arising from Fermi-level pinning (FLP) at electrical contacts is a bottleneck in designing high-performance nanoscale electronics and optoelectronics based on molybdenum disulfide (MoS). For electrical contacts of multilayered MoS, the Fermi level on the metal side is strongly pinned near the conduction-band edge of MoS, which makes most MoS-channel field-effect transistors (MoS FETs) exhibit n-type transfer characteristics regardless of their source/drain (S/D) contact metals. In this work, SBH engineering is conducted to control the SBH of electrical top contacts of multilayered MoS by introducing a metal-interlayer-semiconductor (MIS) structure which induces the Fermi-level unpinning by a reduction of metal-induced gap states (MIGS).

View Article and Find Full Text PDF

A metal-interlayer-semiconductor (M-I-S) structure with excellent thermal stability and electrical performance for a nonalloyed contact scheme is developed, and considerations for designing thermally stable M-I-S structure are demonstrated on the basis of n-type germanium (Ge). A thermal annealing process makes M-I-S structures lose their Fermi-level unpinning and electron Schottky barrier height reduction effect in two mechanisms: (1) oxygen (O) diffusion from the interlayer to the contact metal due to high reactivity of a pure metal contact with O and (2) interdiffusion between the contact metal and semiconductor through grain boundaries of the interlayer. A pure metal contact such as titanium (Ti) provides very poor thermal stability due to its high reactivity with O.

View Article and Find Full Text PDF