Colloidal crystals composed of micro- or nano- colloids have been investigated in various fields such as photonics due to their unique optical properties. Binary colloidal crystals have an outstanding potential for fine-tuning material properties by changing the components, concentration, or size of colloids. Because of their tunable optical, electrical, magnetic, and mechanical properties, those materials attracted great attention.
View Article and Find Full Text PDFFor the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components.
View Article and Find Full Text PDFIn this study, bioaccumulation and tissue-level absorption of TiO2 nanoparticles (NPs) in freshwater invertebrates were investigated using transmission electron microscopy (TEM) and scanning transmission X-ray microscopy (STXM). The TiO2 NPs were used to test impacts of core sizes (i.e.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2014
Biodistribution and biomodification of iron oxide (Fe3O4 and α-Fe2O3) nanoparticles (NPs) in a well-known toxicity test organism, Daphnia magna (D. magna), were investigated using transmission electron microscopy (TEM) and scanning transmission X-ray microscopy (STXM). In addition to the morphological changes in the gut tissues of D.
View Article and Find Full Text PDFHere, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device.
View Article and Find Full Text PDFHere, we report an enhanced separation of colloidal particles using a novel type AsPFF (asymmetric pinched flow fractionation) device with two additional features (t-AsPFF-v). Particularly, by adding a tilted sidewall and vertical focusing channels to the conventional AsPFF device, a significant enhancement in the separation resolution (R(m,n)) has been achieved, which was estimated to be 10.4 for 6 and 10 μm PS particles and found to be 11.
View Article and Find Full Text PDF