Publications by authors named "Hyun Soo Cho"

An unprecedented amount of SARS-CoV-2 data has been accumulated compared with previous infectious diseases, enabling insights into its evolutionary process and more thorough analyses. This study investigates SARS-CoV-2 features as it evolved to evaluate its infectivity. We examined viral sequences and identified the polarity of amino acids in the receptor binding motif (RBM) region.

View Article and Find Full Text PDF

Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on VacA, a toxin from Helicobacter pylori, investigating its harmful effects on specific types of stomach cells, particularly how it damages mitochondria and affects cell function.
  • Researchers used human gastric organoids (hAGOs) and tissue samples from infected patients to demonstrate that VacA leads to significant mitochondrial damage and reduced energy production, which weakens the stomach's protective barrier.
  • The study identified a potential treatment, MLN8054, that can repair VacA-induced mitochondrial damage and restore the integrity of gastric cells, highlighting hAGOs as an effective model for testing new drugs against VacA-related diseases.
View Article and Find Full Text PDF

In the ongoing battle against coronavirus disease 2019 (COVID-19), understanding its pathogenesis and developing effective treatments remain critical challenges. The creation of animal models that closely replicate human infection stands as a critical step forward in this research. Here, we present a genetically engineered mouse model with specifically-humanized knock-in ACE2 (hiACE2) receptors.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, and classifying the developmental stages of HCC can help with early prognosis and treatment. This study aimed to investigate diagnostic and prognostic molecular signatures underlying the progression of HCC, including tumor initiation and growth, and to classify its developmental stages based on gene expression levels. We integrated data from two cancer systems, including 78 patients with Edmondson-Steiner (ES) grade and 417 patients with TNM stage cancer.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is a type of cancer with high incidence and mortality rates. Although various chemical interventions are being developed to treat gastric cancer, there is a constant demand for research into new GC treatment targets and modes of action (MOAs) because of the low effectiveness and side effects of current treatments.

Methods: Using the TCGA data portal, we identified EHMT2 overexpression in GC samples.

View Article and Find Full Text PDF

Dysregulation of epidermal growth factor receptor (EGFR) is one of the most common mechanisms associated with the pathogenesis of various cancers. Mitogen-inducible gene 6 [MIG6; also known as ERBB receptor feedback inhibitor 1 (ERRFI1)], identified as a feedback inhibitor of EGFR, negatively regulates EGFR by directly inhibiting its kinase activity and facilitating its internalization, subsequently leading to degradation. Despite its proposed role as an EGFR-dependent tumor suppressor, the functional consequences and clinical relevance in cancer etiology remain incompletely understood.

View Article and Find Full Text PDF

Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on SMYD5 as a new regulator of metastasis in lung cancer, which is the primary cause of death for these patients.
  • It was found that SMYD5 is overexpressed in lung cancer cells and its knockdown reduces cell migration and invasion, indicating its role in the disease's spread.
  • The researchers suggest that targeting SMYD5 could improve lung cancer treatments, particularly when combined with traditional chemotherapy.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a special way to grow tiny human intestinal organs (called organoids) for research, making sure they grow well and are easy to use.
  • They used special human stem cells that can turn into different types of intestinal cells, helping researchers understand how intestines work and stay healthy.
  • This new method also helps scientists study diseases, like how a virus affects the intestines, and could be useful for future medicines and treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Genetic liver disease modeling is complicated due to the difficulty of accessing patient tissue samples and creating relevant models.
  • The researchers improved a protocol for creating liver organoids from pluripotent stem cells, making it easier to produce these organoids on a larger scale and with consistent quality.
  • They successfully created liver organoids from patients with glycogen storage disease type Ia (GSD1a), which displayed key disease characteristics, potentially aiding in the development of personalized treatments for genetic liver diseases.
View Article and Find Full Text PDF

Coronavirus Disease 2019 (COVID-19) pandemic is severely impacting the world, and tremendous efforts have been made to deal with it. Despite many advances in vaccines and therapeutics, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains an intractable challenge. We present a bivalent Receptor Binding Domain (RBD)-specific synthetic antibody, specific for the RBD of wild-type (lineage A), developed from a non-antibody protein scaffold composed of LRR (Leucine-rich repeat) modules through phage display.

View Article and Find Full Text PDF

ARL6IP1 is implicated in hereditary spastic paraplegia (HSP), but the specific pathogenic mechanism leading to neurodegeneration has not been elucidated. Here, we clarified the molecular mechanism of ARL6IP1 in HSP using in vitro and in vivo models. The Arl6ip1 knockout (KO) mouse model was generated to represent the clinically involved frameshift mutations and mimicked the HSP phenotypes.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with high mortality in Eastern Asia. The disease is caused by the SFTS virus (SFTSV), also known as Dabie bandavirus, which has a segmented RNA genome consisting of L, M, and S segments. Previous studies have suggested differential viral virulence depending on the genotypes of SFTSV; however, the critical viral factor involved in the differential viral virulence is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Attempts to develop drugs targeting the corticotropin-releasing hormone receptor 1 (CRFR) for stress-related therapy have not been successful so far.
  • High-resolution studies using X-ray free-electron lasers (XFELs) aided in understanding GPCR structures, leading to the elucidation of the CRFR's crystal structure with a specific antagonist.
  • Two new antagonists, BMK-C203 and BMK-C205, were developed, with BMK-C205 showing significant antidepressant effects in mice, suggesting potential for effective drug development against CRFR.
View Article and Find Full Text PDF

Epigenetic alterations, especially histone methylation, are key factors in cell migration and invasion in cancer metastasis. However, in lung cancer metastasis, the mechanism by which histone methylation regulates metastasis has not been fully elucidated. Here, we found that the histone methyltransferase SMYD2 is overexpressed in lung cancer and that knockdown of SMYD2 could reduce the rates of cell migration and invasion in lung cancer cell lines via direct downregulation of SMAD3 via SMYD2-mediated epigenetic regulation.

View Article and Find Full Text PDF

Inflammasomes are multi-protein complexes and play a crucial role in host defense against pathogens. Downstream inflammatory responses through inflammasomes are known to be related to the oligomerization degree of ASC specks, but the detailed mechanism still remains unexplored. Here, we demonstrate that oligomerization degrees of ASC specks regulate the caspase-1 activation in the extracellular space.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC), also known as kidney cancer, is a common malignant tumor of the urinary system. While surgical treatment is essential, novel therapeutic targets and corresponding drugs for RCC are still needed due to the high relapse rate and low five-year survival rate. In this study, we found that SUV420H2 is overexpressed in renal cancers and that high SUV420H2 expression is associated with a poor prognosis, as evidenced by RCC RNA-seq results derived from the TCGA.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs), such as butyrate, propionate, and acetate produced by the gut microbiota have been implicated in physiological responses (defense mechanisms, immune responses, and cell metabolism) in the human body. In several types of cancers, SCFAs, especially butyrate, suppress tumor growth and cancer cell metastasis via the regulation of the cell cycle, autophagy, cancer-related signaling pathways, and cancer cell metabolism. In addition, combination treatment with SCFAs and anticancer drugs exhibits synergistic effects, increasing anticancer treatment efficiency and attenuating anticancer drug resistance.

View Article and Find Full Text PDF

Rapid emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted an urgent need for the development of broadly applicable and potently neutralizing antibody platform against the SARS-CoV-2, which can be used for combatting the coronavirus disease 2019 (COVID-19). In this study, based on a noncompeting pair of phage display-derived human monoclonal antibodies (mAbs) specific to the receptor-binding domain (RBD) of SARS-CoV-2 isolated from human synthetic antibody library, we generated K202.B, a novel engineered bispecific antibody with an immunoglobulin G4-single-chain variable fragment design, with sub- or low nanomolar antigen-binding avidity.

View Article and Find Full Text PDF

The cortical actin cytoskeleton plays a critical role in maintaining intestinal epithelial integrity, and the loss of this architecture leads to chronic inflammation, as seen in inflammatory bowel disease (IBD). However, the exact mechanisms underlying aberrant actin remodeling in pathological states remain largely unknown. Here, we show that a subset of patients with IBD exhibits substantially higher levels of tripartite motif-containing protein 40 (TRIM40), a gene that is hardly detectable in healthy individuals.

View Article and Find Full Text PDF

Aims: The nuclear factor-κB (NF-κB) signalling pathway plays a critical role in the pathogenesis of multiple vascular diseases. However, in endothelial cells (ECs), the molecular mechanisms responsible for the negative regulation of the NF-κB pathway are poorly understood. In this study, we investigated a novel role for protein tyrosine phosphatase type IVA1 (PTP4A1) in NF-κB signalling in ECs.

View Article and Find Full Text PDF