Plasticity of the root system architecture (RSA) is essential in enabling plants to cope with various environmental stresses and is mainly controlled by the phytohormone auxin. Lateral root development is a major determinant of RSA. Abiotic stresses reduce auxin signaling output, inhibiting lateral root development; however, how abiotic stress translates into a lower auxin signaling output is not fully understood.
View Article and Find Full Text PDFThe continuous growth of the global population and the increase in the amount of arid land has severely constrained agricultural crop production. To solve this problem, many researchers have attempted to increase productivity through the efficient distribution of energy; however, the direct relationship between the plant vasculature, specifically phloem development, and crop yield is not well established. Here, we demonstrate that an optimum increase in phloem-transportation capacity by reducing SIJUL expression leads to improved sink strength in tomato (Solanum lycopersicum L.
View Article and Find Full Text PDFMeiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified.
View Article and Find Full Text PDFMeiotic crossovers facilitate chromosome segregation and create new combinations of alleles in gametes. Crossover frequency varies along chromosomes and crossover interference limits the coincidence of closely spaced crossovers. Crossovers can be measured by observing the inheritance of linked transgenes expressing different colors of fluorescent protein in Arabidopsis pollen tetrads.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) influence the fate of target RNAs via direct interactions. During transcription, RBPs and interacting partners are recruited to and modify transcripts, after which they may also participate in critical steps to generate functional RNA. RBP-RNA interactions govern post-transcriptional processing of RNA, consequently regulating gene expression in a spatio-temporal manner.
View Article and Find Full Text PDFPhloem network integrates cellular energy status into post-embryonic growth, and development by tight regulation of carbon allocation. Phloem development involves complicated coordination of cell fate determination, cell division, and terminal differentiation into sieve elements (SEs), functional conduit. All of these processes must be tightly coordinated, for optimization of systemic connection between source supplies and sink demands throughout plant life cycle, that has substantial impact on crop productivity.
View Article and Find Full Text PDFThe emergence of a plant vascular system was a prerequisite for the colonization of land; however, it is unclear how the photosynthate transporting system was established during plant evolution. Here, we identify a novel translational regulatory module for phloem development involving the zinc-finger protein JULGI (JUL) and its targets, the 5' untranslated regions (UTRs) of the SUPPRESSOR OF MAX2 1-LIKE4/5 (SMXL4/5) mRNAs, which is exclusively conserved in vascular plants. JUL directly binds and induces an RNA G-quadruplex in the 5' UTR of SMXL4/5, which are key promoters of phloem differentiation.
View Article and Find Full Text PDFMeiotic recombination initiates from DNA double-strand breaks (DSBs) generated by SPO11 topoisomerase-like complexes. Meiotic DSB frequency varies extensively along eukaryotic chromosomes, with hotspots controlled by chromatin and DNA sequence. To map meiotic DSBs throughout a plant genome, we purified and sequenced SPO11-1-oligonucleotides.
View Article and Find Full Text PDFThe emergence of antibiotic resistant Staphylococcus aureus presents a worldwide problem that requires non-antibiotic strategies. This study investigated the anti-biofilm and anti-hemolytic activities of four red wines and two white wines against three S. aureus strains.
View Article and Find Full Text PDFE. coli O157:H7 is the most common cause of hemorrhagic colitis, and no effective therapy exists for E. coli O157:H7 infection.
View Article and Find Full Text PDFThermoresponsive polymers have potential biomedical applications for drug delivery and tissue engineering. Here, two thermoresponsive oligomers were synthesized, viz. oligo(N-isopropylacrylamide) (ONIPAM) and oligo(N-vinylcaprolactam) (OVCL), and their anti-biofouling abilities investigated against enterohemorrhagic E.
View Article and Find Full Text PDFInfection with enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a worldwide problem. Of the 498 plant extracts screened against EHEC, 16 inhibited the formation of biofilm of EHEC by >85% without inhibiting the growth of planktonic cells, and 14 plant extracts reduced the swarming motility of EHEC. The most active extract, Carex dimorpholepis, decreased swimming and swarming motilities and curli formation.
View Article and Find Full Text PDFPathogenic biofilms are associated with persistent infection due to their high resistances to diverse antibiotics. Pseudomonas aeruginosa infects plants, animals, and humans and is a major cause of nosocomial diseases in patients with cystic fibrosis. In the present study, the antibiofilm abilities of 522 plant extracts against P.
View Article and Find Full Text PDFStaphylococcus aureus is a leading cause of nosocomial infections because of its resistance to diverse antibiotics. The formation of a biofilm is one of the mechanisms of drug resistance in S. aureus.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
May 2013
Human pathogens can readily develop drug resistance due to the long-term use of antibiotics that mostly inhibit bacterial growth. Unlike antibiotics, antivirulence compounds diminish bacterial virulence without affecting cell viability and thus, may not lead to drug resistance. Staphylococcus aureus is a major agent of nosocomial infections and produces diverse virulence factors, such as the yellow carotenoid staphyloxanthin, which promotes resistance to reactive oxygen species (ROS) and the host immune system.
View Article and Find Full Text PDF