Publications by authors named "Hyun R Ryu"

Gold (AuNPs, 12.8 nm) and silver nanoparticles (AgNPs, 10 nm), mixed or separate, were injected into the caudal vein of male Sprague-Dawley rats for 4 weeks. The rats were allowed to recover for further 4 weeks to examine the differences in AuNP/AgNP tissue distribution and clearance.

View Article and Find Full Text PDF

Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin-proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation.

View Article and Find Full Text PDF

In our previous studies of nanocalcium carbonate, in which we performed physicochemical analysis, genotoxicity, acute single-dose and repeated-dose 14-day oral toxicity testings in Sprague-Dawley (SD) rats, nanocalcium carbonate did not show a difference in toxicity compared to vehicle control. Here, we provide the first report of a repeated-dose 90-day oral toxicity test of nanocalcium carbonate in Sprague-Dawley rats, with physicochemical comparison of micro and nanocalcium carbonate. We find that the two particles differ in size, hydrodynamic size, and specific surface area, with no differences in components, crystalline structure and radical production.

View Article and Find Full Text PDF

Innervation has proven to be critical in bone homeostasis/regeneration due to the effect of soluble factors, produced by nerve fibers, associated with changes in the activity of bone cells. Thus, in this study, we have established and characterized a coculture system comprising sensory neurons and osteoblasts to mimic the in vivo scenario where nerve fibers can be found in a bone microenvironment. Embryonic or adult primary dorsal root ganglion (DRG) and MC3T3-E1 osteoblastic cells were cocultured in compartmentalized microfluidic platforms and morphological and functional tests were performed.

View Article and Find Full Text PDF

Silver nanoparticles are known to be distributed in many tissues after oral or inhalation exposure. Thus, understanding the tissue clearance of such distributed nanoparticles is very important to understand the behavior of silver nanoparticles in vivo. For risk assessment purposes, easy clearance indicates a lower overall cumulative toxicity.

View Article and Find Full Text PDF

The specific properties of silver nanoparticles (AgNPs), such as antimicrobial activity and electrical conductivity, allow them to be used in many fields. However, their expanding application is also raising health, environmental and safety concerns. Previous in vivo AgNP toxicity studies have indicated a gender-different accumulation of silver in the kidneys, with 2-3 times more silver in female kidneys compared to male kidneys.

View Article and Find Full Text PDF

This paper describes the in vitro formation and characterization of perfusable capillary networks made of human umbilical vein endothelial cells (HUVECs) in microfluidic devices (MFDs). Using this platform, an array of three-dimensional (3D) tubular capillaries of various dimensions (50-150 μm in diameter and 100-1600 μm in length) can be formed reproducibly. To generate connected blood vessels, MFDs were completely filled with fibrin gel and subsequently processed to selectively leave behind gel structures inside the bridge channels.

View Article and Find Full Text PDF

To clarify the health risks related to silver nanoparticles (Ag-NPs), we evaluated the genotoxicity, acute oral and dermal toxicity, eye irritation, dermal irritation and corrosion and skin sensitisation of commercially manufactured Ag-NPs according to the OECD test guidelines and GLP. The Ag-NPs were not found to induce genotoxicity in a bacterial reverse mutation test and chromosomal aberration test, although some cytotoxicity was observed. In acute oral and dermal toxicity tests using rats, none of the rats showed any abnormal signs or mortality at a dose level of ∼ 2000 mg/kg.

View Article and Find Full Text PDF

Neurons, one of the most polarized types of cells, are typically composed of cell bodies (soma), dendrites, and axons. Many events such as electric signal transmission, axonal transport, and local protein synthesis occur in the axon, so that a method for isolating axons from somata and dendrites is required for systematically investigating these axonal events. Based on a previously developed neuron culture method for isolating and directing the growth of central nervous system axons without introducing neutrophins, we report three modified microfluidic platforms: (1) for performing biochemical analysis of the pure axonal fraction, (2) for culturing tissue explants, and (3) a design that allows high content assay on same group of cells.

View Article and Find Full Text PDF