Publications by authors named "Hyun Pil Lee"

Background: Amyloid-β precursor protein (APP) is a highly conserved single transmembrane protein that has been linked to Alzheimer disease. Recently, the increased expression of APP in multiple types of cancers has been reported where it has significant correlation with the cancer cell proliferation. However, the function of APP in the pathogenesis of breast cancer has not previously been determined.

View Article and Find Full Text PDF

Cell cycle re-entry in Alzheimer's disease (AD) has emerged as an important pathological mechanism in the progression of the disease. This appearance of cell cycle related proteins has been linked to tau pathology in AD, but the causal and temporal relationship between the two is not completely clear. In this study, we found that hyperphosphorylated retinoblastoma protein (ppRb), a key regulator for G1/S transition, is correlated with a late marker for hyperphosphorylation of tau but not with other early markers for tau alteration in the 3xTg-AD mouse model.

View Article and Find Full Text PDF

Serine-arginine protein kinases 2 (SRPK2) is a cell cycle-regulated kinase that phosphorylates serine/arginine domain-containing proteins and mediates pre-mRNA splicing with unclear function in neurons. Here, we show that SRPK2 phosphorylates tau on S214, suppresses tau-dependent microtubule polymerization, and inhibits axonal elongation in neurons. Depletion of SRPK2 in dentate gyrus inhibits tau phosphorylation in APP/PS1 mouse and alleviates the impaired cognitive behaviors.

View Article and Find Full Text PDF

While oxidative stress has been linked to Alzheimer's disease, the underlying pathophysiological relationship is unclear. To examine this relationship, we induced oxidative stress through the genetic ablation of one copy of mitochondrial antioxidant superoxide dismutase 2 (Sod2) allele in mutant human amyloid precursor protein (hAPP) transgenic mice. The brains of young (5-7 months of age) and old (25-30 months of age) mice with the four genotypes, wild-type (Sod2(+/+)), hemizygous Sod2 (Sod2(+/-)), hAPP/wild-type (Sod2(+/+)), and hAPP/hemizygous (Sod2(+/-)) were examined to assess levels of oxidative stress markers 4-hydroxy-2-nonenal and heme oxygenase-1.

View Article and Find Full Text PDF

In Alzheimer disease (AD), amyloid-β (Aβ) oligomer is suggested to play a critical role in imitating neurodegeneration, although its pathogenic mechanism remains to be determined. Recently, the cellular prion protein (PrP(C)) has been reported to be an essential co-factor in mediating the neurotoxic effect of Aβ oligomer. However, these previous studies focused on the synaptic plasticity in either the presence or the absence of PrP(C) and no study to date has reported whether PrP(C) is required for the neuronal cell death, the most critical element of neurodegeneration in AD.

View Article and Find Full Text PDF

Neuronal cell cycle activation has been implicated in neurodegenerative diseases such as Alzheimer's disease, while the initiating mechanism of cell cycle activation remains to be determined. Interestingly, our previous studies have shown that cell cycle activation by c-Myc (Myc) leads to neuronal cell death which suggests Myc might be a key regulator of cell cycle re-entry mediated neuronal cell death. However, the pattern of Myc expression in the process of neuronal cell death has not been addressed.

View Article and Find Full Text PDF

Oxidative imbalance is one of the earliest manifestations of Alzheimer disease (AD) actually preceding the classic pathology of amyloid β deposits and neurofibrillary tangles. Clinical trials examining antioxidant modulation by a number of global interventions show efficacy, while simple supplementation has limited benefit suggesting complexity of multiple contributing factors. In this review, we highlight new insights regarding novel approaches to understanding and treating AD based on holistic views of oxidative balance including diet.

View Article and Find Full Text PDF

Nuclear fragmentation is a common feature in many neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we show that nuclear lamina dispersion is an early and irreversible trigger for cell death initiated by deregulated Cdk5, rather than a consequence of apoptosis. Cyclin-dependent kinase 5 (Cdk5) activity is significantly increased in AD and contributes to all three hallmarks: neurotoxic amyloid-β (Aβ), neurofibrillary tangles (NFT), and extensive cell death.

View Article and Find Full Text PDF

We have established a Drosophila model of Gerstmann-Sträussler-Scheinker (GSS) syndrome by expressing mouse prion protein (PrP) having leucine substitution at residue 101 (MoPrP(P101L)). Flies expressing MoPrP(P101L), but not wild-type MoPrP (MoPrP(3F4)), showed severe defects in climbing ability and early death. Expressed MoPrP(P101L) in Drosophila was differentially glycosylated, localized at the synaptic terminals and mainly present as deposits in adult brains.

View Article and Find Full Text PDF

Oxidative stress is an important factor, and one that acts in the earliest stages, of Alzheimer's disease (AD) pathogenesis. The reduction of oxidative stress has been tested as a therapy for AD. While the trial of vitamin E supplementation in moderately severe AD is the most promising so far, it also reveals the limitations of general antioxidant therapies that simply lower oxidative stress and, therefore, the complexity of the redox system.

View Article and Find Full Text PDF

The complex neurodegeneration underlying Alzheimer disease (AD), although incompletely understood, is characterised by an aberrant re-entry into the cell cycle in neurons. Pathological evidence, in the form of cell cycle markers and regulatory proteins, suggests that cell cycle re-entry is an early event in AD, which precedes the formation of amyloid-beta plaques and neurofibrillary tangles (NFTs). Although the exact mechanisms that induce and mediate these cell cycle events in AD are not clear, significant advances have been made in further understanding the pathological role of cell cycle re-entry in AD.

View Article and Find Full Text PDF

Cyclin-dependent kinase (Cdk) 5 and p38 activities are significantly increased in Alzheimer's Disease (AD). Both p38 and Cdk5 promote neurodegeneration upon deregulation. However, to date the mechanistic link between Cdk5 and p38 remains unclear.

View Article and Find Full Text PDF

As the most prevalent form of dementia worldwide, Alzheimer's disease (AD) continues to be a burden for patients and their families. In addition, with the global population of aged individuals increasing exponentially, AD represents a significant economic burden to society. The development of an effective approach for the treatment of AD is thus of major importance, as current treatment strategies are limited to agents that attenuate disease symptomatology without addressing the causes of disease.

View Article and Find Full Text PDF

Retinoic acid, an essential factor derived from vitamin A, has been shown to have a variety of functions including roles as an antioxidant and in cellular differentiation. Since oxidative stress and dedifferentiation of neurons appear to be common pathological elements of a number of neurodegenerative disorders, we speculated that retinoic acid may offer therapeutic promise. In this vein, recent compelling evidence indicates a role of retinoic acid in cognitive activities and anti-amyloidogenic properties.

View Article and Find Full Text PDF

Lipid peroxidation byproducts, such as 4-hydroxynonenal (HNE) and 4-oxo-2-nonenal (ONE), induce cell death in a wide variety of cell types, partly by modulating intracellular signaling pathways. However, the specific mechanisms involved, particularly for ONE, are unclear while c-Jun N-terminal kinase (JNK) has been shown to be essential in HNE-mediated cytotoxicity. In this study, we examined the role of mitogen-activated protein kinases signaling pathways in ONE-induced cytotoxicity in SH-SY5Y human neuroblastoma cells and found that ONE strongly induces the phosphorylation of extracellular signal-regulated kinase (ERK) and JNK, but not p38 MAPK.

View Article and Find Full Text PDF

To develop monoclonal antibodies (MAbs) to react with normal prion protein (PrPC) and abnormal isoform of prion protein (PrPSc), PrPSc was isolated from brains of 263 K scrapie-infected hamsters and immunized to PrP knockout mice. We developed two hybridomas, 3F10 and 1C5 (IgG1), of which epitope mappings were screened by using glutathione S-transferase (GST) fusion proteins of recombinant hamster prion protein and suitable peptides. 3F10 showed a high affinity for hamster and mouse PrP and was demonstrated to recognize the residues 137-151.

View Article and Find Full Text PDF

We investigated the expression, activation and distribution of c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinases (p38 MAPKs) and extracellular signal-regulated kinases (ERKs), using western blotting and immunohistochemistry, in the brains of hamsters infected with 263K scrapie agent, to clarify the role of these kinases in the pathogenesis of prion disease. The immunoblot analysis demonstrated that activation of JNK, p38 MAPK and ERK in whole brain homogenates was increased in infected animals. Phosphorylation of cAMP/calcium responsive element binding protein (CREB), a downstream transcription factor of active ERK, was significantly increased in scrapie-infected hamsters.

View Article and Find Full Text PDF

While chemokines play an important role in host defense, it has become abundantly clear that their expression is not solely restricted to immune cells. In this study, to investigate the role of chemokines in pathogenic mechanism of neurodegeneration in prion diseases, we determined the cerebral expression of RANTES, a major chemoattractant of monocytes and activated lymphocytes, and its receptors CCR1, CCR3 and CCR5 in ME7 scrapie-infected mice. The mRNA of RANTES gene was upregulated in the brains of scrapie-infected mice.

View Article and Find Full Text PDF