Publications by authors named "Hyun Kil Shin"

New approach methods (NAMs) have been developed to predict a wide range of toxicities through innovative technologies. Liver injury is one of the most extensively studied endpoints due to its severity and frequency, occurring among populations that consume drugs or dietary supplements. In this review, we focus on recent developments of in silico modeling for liver injury prediction using deep learning and in vitro data based on adverse outcome pathways (AOPs).

View Article and Find Full Text PDF

Summary: Drug-induced liver injury (DILI) is a challenging endpoint in predictive toxicology because of the complex reactive metabolites that cause liver damage and the wide range of mechanisms involved in the development of the disease. ToxSTAR provides structural similarity-based DILI analysis and in-house DILI prediction models that predict four DILI subtypes (cholestasis, cirrhosis, hepatitis and steatosis) based on drug and drug metabolite molecules.

Availability And Implementation: ToxSTAR is freely available at https://toxstar.

View Article and Find Full Text PDF

Unlabelled: Drug-induced liver injury (DILI) is one of the leading reasons for discontinuation of a new drug development project. Diverse machine learning or deep learning models have been developed to predict DILI. However, these models have not provided an adequate understanding of the mechanisms leading to DILI.

View Article and Find Full Text PDF

Deep learning (DL) models in quantitative structure-activity relationship fed the molecular structure directly to the network without using human-designed descriptors by representing molecule as a graph or string (e.g., SMILES code).

View Article and Find Full Text PDF

The objective of this study was to develop a robust prediction model for the infinite dilution activity coefficients ( ) of organic molecules in diverse ionic liquid (IL) solvents. Electrostatic, hydrogen bond, polarizability, molecular structure, and temperature terms were used in model development. A feed-forward model based on artificial neural networks was developed with 34,754 experimental activity coefficients, a combination of 195 IL solvents (88 cations and 38 anions), and 147 organic solutes at a temperature range of 298 to 408 K.

View Article and Find Full Text PDF

Limited studies of quantitative toxicity-toxicity relationship (QTTR) modeling have been conducted to predict interspecies toxicity of engineered nanomaterials (ENMs) between aquatic test species. A meta-analysis of 66 publications providing acute toxicity data of silver nanoparticles (AgNPs) to daphnia and fish was performed, and the toxicity data, physicochemical properties, and experimental conditions were collected and curated. Based on Euclidean distance (ED) grouping, a meaningful correlation of logarithmic lethal concentrations between daphnia and fish was derived for bare (R = 0.

View Article and Find Full Text PDF

Biocidal products are broadly used in homes and industries. However, the safety of biocidal active substances (BASs) is not yet fully understood. In particular, the neurotoxic action of BASs needs to be studied as diverse epidemiological studies have reported associations between exposure to BASs and neural diseases.

View Article and Find Full Text PDF

Computer-aided research on the relationship between molecular structures of natural compounds (NC) and their biological activities have been carried out extensively because the molecular structures of new drug candidates are usually analogous to or derived from the molecular structures of NC. In order to express the relationship physically realistically using a computer, it is essential to have a molecular descriptor set that can adequately represent the characteristics of the molecular structures belonging to the NC's chemical space. Although several topological descriptors have been developed to describe the physical, chemical, and biological properties of organic molecules, especially synthetic compounds, and have been widely used for drug discovery researches, these descriptors have limitations in expressing NC-specific molecular structures.

View Article and Find Full Text PDF

Due to the lack of nano descriptors that can appropriately represent the wide chemical space of engineered nanomaterials (ENMs), applicability domain of nano-quantitative structure-activity relationship models are limited to certain types of ENMs, such as metal oxides, metals, carbon-based nanomaterials, or quantum dots. In this study, a size-dependent electron configuration fingerprint (SDEC FP) was introduced to estimate the quantity of electrons based on the core, doping, and coating materials of ENMs in different sizes. SDEC FP was used in prediction model development and nanostructure similarity analysis on datasets including metal and carbon-based nanomaterials with and without surface modifications.

View Article and Find Full Text PDF

Registration, evaluation, and authorization of chemicals (REACH), the regulation of chemicals in use, imposes the characterization and report of the physicochemical properties of compounds. To cope with the financial burden of the experiments, the use of computational models is permitted for prediction of properties. Although a number of physicochemical property prediction models have been developed, their applicability domain is limited to organic molecules since most available data are concerned with organic molecules, and most of the molecular descriptors are restricted to organic molecule calculations.

View Article and Find Full Text PDF

This study aimed to develop a drug metabolism prediction platform using knowledge-based prediction models. Site of Metabolism (SOM) prediction models for four cytochrome P450 (CYP) subtypes were developed along with uridine 5'-diphosphoglucuronosyltransferase (UGT) and sulfotransferase (SULT) substrate classification models. The SOM substrate for a certain CYP was determined using the sum of the activation energy required for the reaction at the reaction site of the substrate and the binding energy of the substrate to the CYP enzyme.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is one of the major reasons for termination of drug development. Due to the importance of predicting DILI in early phases of drug development, diverse models have been developed to filter out DILI-causing candidates before clinical study. However, no computational models have achieved sufficient prediction power for screening DILI in early phases because 1) drugs often cause liver injury through reactive metabolites, 2) different clinical outcomes of DILI have different mechanisms, and 3) the DILI label on drugs is not clearly defined.

View Article and Find Full Text PDF