Tobacco smoking (TS) is implicated in lung cancer (LC) progression through the development of metabolic syndrome. However, direct evidence linking metabolic syndrome to TS-mediated LC progression remains to be established. Our findings demonstrate that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (NNK and BaP; NB), components of tobacco smoke, induce metabolic syndrome characteristics, particularly hyperglycemia, promoting lung cancer progression in male C57BL/6 J mice.
View Article and Find Full Text PDFAnn Pediatr Endocrinol Metab
April 2024
Background: The primary aim of this study was to investigate the final adult height (FAH) of girls diagnosed with central precocious puberty (CPP) who were untreated.
Methods: We retrospectively analyzed the medical records of 36 girls diagnosed with CPP between 8 and 9 years of age who did not receive treatment, and 206 girls diagnosed with CPP within the same age range who received gonadotropin-releasing hormone (GnRH) agonist treatment. Midparental height (MPH), predicted adult height (PAH) obtained using height and bone age (BA) at the time of diagnosis (PAH for BA), and PAH obtained using the Bayley-Pinneau method (PAH by BP) were calculated.
Aim: The prevalence of metabolic syndrome (MetS), a cluster of serious medical conditions that raise the risk of lung cancer, has increased worldwide. Tobacco smoking (TS) potentially increases the risk of developing MetS. Despite the potential association of MetS with lung cancer, preclinical models that mimic human diseases, including TS-induced MetS, are limited.
View Article and Find Full Text PDFAnn Pediatr Endocrinol Metab
December 2023
Background: Chemoresistance is a major obstacle to the successful treatment of triple-negative breast cancer (TNBC) and non-small-cell lung cancer (NSCLC). Therapeutic strategies to overcome chemoresistance are necessary to improve the prognosis of patients with these cancers.
Methods: Paclitaxel-resistant TNBC and NSCLC sublines were generated through continuous paclitaxel treatment over 6 months.
Background: Cancer stem-like cells (CSCs) play a pivotal role in lung tumor formation and progression. Nerve injury-induced protein 1 (Ninjurin1, Ninj1) has been implicated in lung cancer; however, the pathological role of Ninj1 in the context of lung tumorigenesis remains largely unknown.
Methods: The role of Ninj1 in the survival of non-small cell lung cancer (NSCLC) CSCs within microenvironments exhibiting hazardous conditions was assessed by utilizing patient tissues and transgenic mouse models where Ninj1 repression and oncogenic Kras or carcinogen-induced genetic changes were induced in putative pulmonary stem cells (SCs).
Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases.
View Article and Find Full Text PDFMetabolic rewiring to utilize aerobic glycolysis is a hallmark of cancer. However, recent findings suggest the role of mitochondria in energy generation in cancer cells and the metabolic switch to oxidative phosphorylation (OXPHOS) in response to the blockade of glycolysis. We previously demonstrated that the antitumor effect of gracillin occurs through the inhibition of mitochondrial complex II-mediated energy production.
View Article and Find Full Text PDFQuiescent cancer cells are believed to cause cancer progression after chemotherapy through unknown mechanisms. We show here that human non-small cell lung cancer (NSCLC) cell line-derived, quiescent-like, slow-cycling cancer cells (SCC) and residual patient-derived xenograft (PDX) tumors after chemotherapy experience activating transcription factor 6 (ATF6)-mediated upregulation of various cytokines, which acts in a paracrine manner to recruit fibroblasts. Cancer-associated fibroblasts (CAF) underwent transcriptional upregulation of COX2 and type I collagen (Col-I), which subsequently triggered a slow-to-active cycling switch in SCC through prostaglandin E (PGE)- and integrin/Src-mediated signaling pathways, leading to cancer progression.
View Article and Find Full Text PDFMitochondria play a pivotal role in cancer bioenergetics and are considered a potential target for anticancer therapy. Considering the limited efficacy and toxicity of currently available mitochondria-targeting agents, it is necessary to develop effective mitochondria-targeting anticancer drugs. By screening a large chemical library consisting of natural products with diverse chemical entities, we identified gracillin, a steroidal saponin, as a mitochondria-targeting antitumor drug.
View Article and Find Full Text PDFPurpose: Periventricular echogenicity (PVE) presents as diffuse echo dense lesions of the periventricular white matter on cranial ultrasonography. Beyond two weeks of life, it is considered as prolonged or persistent PVE. The aim of our study was to investigate the clinical characteristics of preterm infants with persistent PVE beyond 2 weeks after birth and to determine whether these infants had an adverse neurodevelopmental outcome.
View Article and Find Full Text PDFMolecular insights into how chronic stress affects lung tumorigenesis may offer new routes to chemoprevention. In this study, we show that chronic stress in mice chemically or genetically initiated for lung cancer leads to the release of norepinephrine and other catecholamines, thereby promoting lung tumorigenesis. Mechanistically, norepinephrine induced phosphorylation of L-type voltage-dependent calcium channels (VDCC) through the β-adrenergic receptor-PKA pathway.
View Article and Find Full Text PDFActivation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC).
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers.
View Article and Find Full Text PDFBackground: Therapeutic interventions in the insulin-like growth factor receptor (IGF-1R) pathway were expected to provide clinical benefits; however, IGF-1R tyrosine kinase inhibitors (TKIs) have shown limited antitumor efficacy, and the mechanisms conveying resistance to these agents remain elusive.
Methods: The expression and activation of the IGF-1R and Src were assessed via the analysis of a publicly available dataset, as well as immunohistochemistry, Western blotting, RT-PCR, and in vitro kinase assays. The efficacy of IGF-1R TKIs alone or in combination with Src inhibitors was analyzed using MTT assays, colony formation assays, flow cytometric analysis, and xenograft tumor models.