Stabilizing a frequency comb to an ultra-stable optical frequency reference requires a multitude of optoelectronic peripherals that have to operate under strict ambient control. Meanwhile, the frequency comb-to-comb stabilization aims to synchronize a slave comb to a well-established master comb with a substantial saving in required equipment and efforts. Here, we report an utmost case of frequency comb-to-comb stabilization made through a 1.
View Article and Find Full Text PDFPhase-coherent transfer of optical frequencies over a long distance is required for diverse photonic applications, including optical clock dissemination and physical constants measurement. Several demonstrations were made successfully over fiber networks, but not much work has been done yet through the open air where atmospheric turbulence prevails. Here, we use an 18 km outdoor link to transmit multiple optical carriers extracted directly from a frequency comb of a 4.
View Article and Find Full Text PDFWe report a multi-channel optical frequency synthesizer developed to generate extremely stable continuous-wave lasers directly out of the optical comb of an Er-doped fiber oscillator. Being stabilized to a high-finesse cavity with a fractional frequency stability of 3.8 × 10 at 0.
View Article and Find Full Text PDFA prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.
View Article and Find Full Text PDFA two-color scheme of heterodyne laser interferometer is devised for distance measurements with the capability of real-time compensation of the refractive index of the ambient air. A fundamental wavelength of 1555 nm and its second harmonic wavelength of 777.5 nm are generated, with stabilization to the frequency comb of a femtosecond laser, to provide fractional stability of the order of 3.
View Article and Find Full Text PDFA multi-wavelength interferometer utilizing the frequency comb of a femtosecond laser as the wavelength ruler is tested for its capability of ultra-precision positioning for machine axis control. The interferometer uses four different wavelengths phase-locked to the frequency comb and then determines the absolute position through a multi-channel scheme of detecting interference phases in parallel so as to enable fast, precise and stable measurements continuously over a few meters of axis-travel. Test results show that the proposed interferometer proves itself as a potential candidate of absolute-type position transducer needed for next-generation ultra-precision machine axis control, demonstrating linear errors of less than 61.
View Article and Find Full Text PDF