Publications by authors named "Hyun Jae Yu"

HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to understand how viruses, like HIV-1, get into the cell's nucleus through special openings called nuclear pore complexes (NPCs).
  • They found that a part of the HIV-1 virus called the capsid (CA) is really important for this process, as it interacts with specific proteins called nucleoporins (Nups) in the NPCs.
  • Researchers discovered that certain nucleoporins (Nup35, Nup153, and POM121) help HIV-1 get inside the nucleus, and that if the capsid is changed or certain host factors are removed, the virus has a harder time getting in.
View Article and Find Full Text PDF

Retroviruses utilize the viral integrase (IN) protein to integrate a DNA copy of their genome into host chromosomal DNA. HIV-1 integration sites are highly biased towards actively transcribed genes, likely mediated by binding of the IN protein to specific host factors, particularly LEDGF, located at these gene regions. We here report a substantial redirection of integration site distribution induced by a single point mutation in HIV-1 IN.

View Article and Find Full Text PDF

The HIV-1 capsid is the target for the antiviral drugs GS-CA1 and Lenacapavir (GS-6207). We investigated the mechanism by which GS-CA1 and GS-6207 inhibit HIV-1 infection. HIV-1 inhibition by GS-CA1 did not require CPSF6 in CD4 T cells.

View Article and Find Full Text PDF

In vitro, dendritic cells (DCs) bind and transfer intact, infectious HIV to CD4 T cells without first becoming infected, a process known as trans-infection. trans-infection is accomplished by recruitment of HIV and its receptors to the site of DC-T cell contact and transfer of virions at a structure known as the infectious synapse. In this study, we used fluorescent microscopy to track individual HIV particles trafficking in DCs during virus uptake and trans-infection.

View Article and Find Full Text PDF

A mycovirus, named oyster mushroom spherical virus (OMSV), was isolated from cultivated oyster mushrooms with a severe epidemic of oyster mushroom Die-back disease. OMSV was a 27-nm spherical virus encapsidating a single-stranded RNA (ssRNA) of 5.784 kb with a coat protein of approximately 28.

View Article and Find Full Text PDF