Clinical biomarkers are crucial for diagnosing and predicting outcomes in patients with traumatic brain injury (TBI). In this study, we performed an unbiased analysis of plasma proteins in acute TBI patients using bead-based multiplex assays and identified a strong positive correlation between LCN2 and IL-6 levels. Based on these findings, we hypothesized that LCN2 and IL-6 are closely related circulating biomarkers for TBI.
View Article and Find Full Text PDFAxon guidance molecules are critical for neuronal pathfinding because they regulate directionality and growth pace during nervous system development. However, the molecular mechanisms coordinating proper axonal extension and turning are poorly understood. Here, metastasis suppressor 1 (Mtss1), a membrane protrusion protein, ensured axonal extension while sensitizing axons to the Semaphorin 3E (Sema3E)-Plexin-D1 repulsive cue.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2024
Work-related musculoskeletal disorders represent a major occupational disability issue, and 53.4% of these disorders occur in the back or shoulders. Various types of passive shoulder exoskeletons have been introduced to support the weight of the upper arm and work tools during overhead work, thereby preventing injuries and improving the work environment.
View Article and Find Full Text PDFThe anion channel SLAC1 functions as a crucial effector in the ABA signaling, leading to stomata closure. SLAC1 is activated by phosphorylation in its intracellular domains. Both a binding-activation model and an inhibition-release model for activation have been proposed based on only the closed structures of SLAC1, rendering the structure-based activation mechanism controversial.
View Article and Find Full Text PDFLiving cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K channels and nerve impulse transmitters, in-line K -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals.
View Article and Find Full Text PDFBEST family is a class of Ca-activated Cl- channels evolutionary well conserved from bacteria to human. The human BEST paralogs (BEST1-BEST4) share significant amino acid sequence homology in the N-terminal region, which forms the transmembrane helicases and contains the direct calcium-binding site, Ca-clasp. But the cytosolic C-terminal region is less conserved in the paralogs.
View Article and Find Full Text PDFCLC-ec1 is a Cl/H antiporter that forms stable homodimers in lipid bilayers, with a free energy of -10.9 kcal/mol in 2:1 POPE/POPG lipid bilayers. The dimerization interface is formed by four transmembrane helices: H, I, P and Q, that are lined by non-polar side-chains that come in close contact, yet it is unclear as to whether their interactions drive dimerization.
View Article and Find Full Text PDFConnexin family proteins assemble into hexameric channels called hemichannels/connexons, which function as transmembrane channels or dock together to form gap junction intercellular channels (GJIChs). We determined the cryo-electron microscopy structures of human connexin 31.3 (Cx31.
View Article and Find Full Text PDFBackground: Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare form of infantile-onset leukodystrophy. The disorder is caused primarily by mutations of MLC1 that leads to a series of phenotypic outcomes including vacuolation of myelin and astrocytes, subcortical cysts, brain edema, and macrocephaly. Recent studies have indicated that functional interactions among MLC1, GlialCAM, and ClC-2 channels play key roles in the regulation of neuronal, glial and vascular homeostasis.
View Article and Find Full Text PDFThe CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl channels and Cl/H antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Glu, could explain the transport cycle of CLC-type Cl/H antiporters.
View Article and Find Full Text PDFAnimal locomotion is mediated by a sensory system referred to as proprioception. Defects in the proprioceptive coordination of locomotion result in uncontrolled and inefficient movements. However, the molecular mechanisms underlying proprioception are not fully understood.
View Article and Find Full Text PDFThe chloride channel (CLC) family of proteins consists of channels and transporters that share similarities in architecture and play essential roles in physiological functions. Among the CLC family, CLC-1 channels have the representative homodimeric double-barreled structure carrying two gating processes. One is protopore gating that acts on each pore independently by glutamate residue (E).
View Article and Find Full Text PDFThis article introduces the history and the long-term goals of the Korea Brain Initiative, which is centered on deciphering the brain functions and mechanisms that mediate the integration and control of brain functions that underlie decision-making. The goal of this initiative is the mapping of a functional connectome with searchable, multi-dimensional, and information-integrated features. The project also includes the development of novel technologies and neuro-tools for integrated brain mapping.
View Article and Find Full Text PDFPreclinical Research Emerging evidence suggests that Dalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has therapeutic potential. This study examined the antiwrinkle effects of ethanol extracts of D.
View Article and Find Full Text PDFDalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has been widely used in northern and eastern Asia to treat diverse diseases. Here, we investigated the anti-senescent effects of ethanolic extracts of Dalbergia odorifera (EEDO) in ultraviolet (UV) B-irradiated skin cells.
View Article and Find Full Text PDFCl(-)/H(+) antiporters of the CLC superfamily transport anions across biological membranes in varied physiological contexts. These proteins are weakly selective among anions commonly studied, including Cl(-), Br(-), I(-), NO3(-) and SCN(-), but they seem to be very selective against F(-). The recent discovery of a new CLC clade of F(-)/H(+) antiporters, which are highly selective for F(-) over Cl(-), led us to investigate the mechanism of Cl(-)-over-F(-) selectivity by a CLC Cl(-)/H(+) antiporter, CLC-ec1.
View Article and Find Full Text PDFChloride-transporting membrane proteins of the CLC family appear in two distinct mechanistic flavors: H(+)-gated Cl(-) channels and Cl(-)/H(+) antiporters. Transmembrane H(+) movement is an essential feature of both types of CLC. X-ray crystal structures of CLC antiporters show the Cl(-) ion pathway through these proteins, but the H(+) pathway is known only inferentially by two conserved glutamate residues that act as way-stations for H(+) in its path through the protein.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2012
A subclass of bacterial CLC anion-transporting proteins, phylogenetically distant from long-studied CLCs, was recently shown to be specifically up-regulated by F(-). We establish here that a set of randomly selected representatives from this "CLC(F)" clade protect Escherichia coli from F(-) toxicity, and that the purified proteins catalyze transport of F(-) in liposomes. Sequence alignments and membrane transport experiments using (19)F NMR, osmotic response assays, and planar lipid bilayer recordings reveal four mechanistic traits that set CLC(F) proteins apart from all other known CLCs.
View Article and Find Full Text PDFAs previously reported, the activity of the large-conductance calcium (Ca(2+))-activated potassium (K(+)) (BK(Ca)) channel is strongly potentiated from the extracellular side of the cell membrane by certain benzofuroindole derivatives. Here, the mechanism of action of one of the most potent activators, 4-chloro-7-(trifluoromethyl)-10H-benzofuro[3,2-b]indole-1-carboxylic acid (CTBIC), is characterized. This compound, Compound 22 in the previous report (Chembiochem 6:1745-1748, 2005), potentiated the activity of the channel by shifting its conductance-voltage relationship toward the more negative direction.
View Article and Find Full Text PDF