Publications by authors named "Hyuk-Min Kim"

We developed an orally active and blood-brain-barrier-permeable benzofuran analogue (8, MDR-1339) with potent antiaggregation activity. Compound 8 restored cellular viability from Aβ-induced cytotoxicity but also improved the learning and memory function of AD model mice by reducing the Aβ aggregates in the brains. Given the high bioavailability and brain permeability demonstrated in our pharmacokinetic studies, 8 will provide a novel scaffold for an Aβ-aggregation inhibitor that may offer an alternative treatment for AD.

View Article and Find Full Text PDF

Ionic liquids (ILs) are defined as salts with a melting point below 100 °C. ILs have received increasing attention as new alternative to organic solvents because of their unique physicochemical properties. Therefore, this study was conducted in the purpose to present the efficacy of ILs as new solvents capable to control the Polymorphic transformation phenomenon.

View Article and Find Full Text PDF

A series of 2-substituted 4-(trifluoromethyl)benzyl C-region analogs of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides were investigated for hTRPV1 antagonism. The analysis indicated that the phenyl C-region derivatives exhibited better antagonism than those of the corresponding pyridine surrogates for most of the series examined. Among the phenyl C-region derivatives, the two best compounds 43 and 44S antagonized capsaicin selectively relative to their antagonism of other activators and showed excellent potencies with K(i(CAP))=0.

View Article and Find Full Text PDF

The molecular microenvironment of the injured spinal cord does not support survival and differentiation of either grafted or endogenous NSCs, restricting the effectiveness of the NSC-based cell replacement strategy. Studying the biology of NSCs in in vivo usually requires a considerable amount of time and cost, and the complexity of the in vivo system makes it difficult to identify individual environmental factors. The present study sought to establish the organotypic spinal cord slice culture that closely mimics the in vivo environment.

View Article and Find Full Text PDF

The present study was undertaken to examine multifaceted therapeutic effects of vascular endothelial growth factor (VEGF) in a rat spinal cord injury (SCI) model, focusing on its capability to stimulate proliferation of endogenous glial progenitor cells. Neural stem cells (NSCs) can be genetically modified to efficiently transfer therapeutic genes to diseased CNS. We adopted an ex vivo approach using immortalized human NSC line (F3 cells) to achieve stable and robust expression of VEGF in the injured spinal cord.

View Article and Find Full Text PDF