Publications by authors named "Hyuk-Kwon Kwon"

Article Synopsis
  • Anti-cancer peptides, such as those derived from the autocrine motility factor (AMF), show promise in killing cancer cells by disrupting their growth and membranes, but more research on their combined effects with plant-derived drugs is needed.
  • In studies on colorectal cancer (CRC) cell lines, AMF peptides were found to significantly inhibit cell growth, reduce colony formation, and increase the production of reactive oxygen species (ROS).
  • The combination of AMF peptides with glycyrrhetinic acid (GA) from licorice further enhanced anti-cancer effects, indicating potential for effective combined therapies for CRC treatment.
View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer, particularly triple-negative breast cancer (TNBC), is a serious health issue with a high risk of progression due to aggressive characteristics and poor outcomes.
  • A process called epithelial-mesenchymal transition (EMT) plays a key role in the development of invasive cancer, and the protein Snail is crucial in this process.
  • The study reveals that Snail degradation is controlled by chaperone-mediated autophagy (CMA), rather than the usual proteasomal pathway, suggesting new insights for potential therapies targeting Snail regulation and its implications in breast cancer metastasis.
View Article and Find Full Text PDF

Inflammation serves as a multifaceted defense mechanism activated by pathogens, cellular damage and irritants, aiming to eliminate primary causes of injury and promote tissue repair. Miq (), prevalent in Vietnam and southern China, has a history of traditional use for treating cough, fever and asthma. Previous studies on its phytochemicals have shown their potential as anti-inflammatory agents, yet underlying mechanisms remain to be elucidated.

View Article and Find Full Text PDF

Introduction: Diabetes mellitus (DM) impairs fracture healing and is associated with susceptibility to infection, which further inhibits fracture healing. While intermittent parathyroid hormone (1-34) (iPTH) effectively improves fracture healing, it is unknown whether infection-associated impaired fracture healing can be rescued with PTH (teriparatide).

Methods: A chronic diet-induced type 2 diabetic mouse model was used to yield mice with decreased glucose tolerance and increased blood glucose levels compared to lean-fed controls.

View Article and Find Full Text PDF
Article Synopsis
  • Infection in diabetic foot ulcers (DFUs) is a critical complication for diabetes patients, with specific pathogens, like Staphylococcus aureus, being primarily responsible for these infections.
  • This study analyzed blood samples from 21 patients with infected DFUs before and after treatment, focusing on changes in gene expression to help understand the immune response and healing process.
  • Results indicated that certain genes associated with infection and healing markedly differed between patients whose wounds healed and those that did not, highlighting potential biomarkers for diagnosis and treatment efficacy.
View Article and Find Full Text PDF

Despite the creation of several experimental animal models for the study of septic arthritis, a protocol detailing the development of a reliable and easily reproducible animal model has not yet been reported. The experimental protocol described herein for the development of a clinically relevant mouse model of septic arthritis includes two main study stages: the first stage consisting of the preparation of the mice and of the methicillin-resistant Staphylococcus aureus (MRSA) cultures, followed by direct inoculation of MRSA into the knee joints of C57BL/6J mice (25-40 min); and a second study stage consisting of multiple sample collection and data analysis (1-3 days). This protocol may be carried out by researchers skilled in mouse care and trained to work with biosafety-level-2 agents such as MRSA.

View Article and Find Full Text PDF

VISTA (V domain immunoglobulin suppressor of T cell activation, also called PD-1H [programmed death-1 homolog]), a novel immune regulator expressed on myeloid and T lymphocyte lineages, is upregulated in mouse and human idiopathic pulmonary fibrosis (IPF). However, the significance of VISTA and its therapeutic potential in regulating IPF has yet to be defined. To determine the role of VISTA and its therapeutic potential in IPF, the expression profile of VISTA was evaluated from human single-cell RNA sequencing data (IPF Cell Atlas).

View Article and Find Full Text PDF

Intracellular infiltration of bacteria into host cells complicates medical and surgical treatment of bacterial joint infections. Unlike soft tissue infections, septic arthritis and infection-associated inflammation destroy cartilage that does not regenerate once damaged. Herein, we show that glycolytic pathways are shared by methicillin-resistant Staphylococcus aureus (MRSA) proliferation and host inflammatory machinery in septic arthritis.

View Article and Find Full Text PDF
Article Synopsis
  • Septic arthritis, caused by bacterial infection in the joint, poses challenges in treating both the infection and the resulting inflammation that damages cartilage.
  • * The study tested the hypothesis that reducing inflammation from MRSA infections could help preserve joint cartilage when paired with antibiotics like vancomycin and rifampin.
  • * Using mouse models, researchers explored inflammation patterns during septic arthritis and found that targeting the ERK1/2 signaling pathway could improve treatment outcomes by lessening cartilage damage while still addressing the infection.
View Article and Find Full Text PDF

Fracture healing is impaired in the setting of infection, which begets protracted inflammation. The most problematic causative agent of musculoskeletal infection is methicillin-resistant Staphylococcus aureus (MRSA). We hypothesized that modulation of excessive inflammation combined with cell-penetrating antibiotic treatments facilitates fracture healing in a murine MRSA-infected femoral fracture model.

View Article and Find Full Text PDF

Disruption of bone homeostasis caused by metastatic osteolytic breast cancer cells increases inflammatory osteolysis and decreases bone formation, thereby predisposing patients to pathological fracture and cancer growth. Alteration of osteoblast function induces skeletal diseases due to the disruption of bone homeostasis. We observed increased activation of pERK1/2 in osteolytic breast cancer cells and osteoblasts in human pathological specimens with aggressive osteolytic breast cancer metastases.

View Article and Find Full Text PDF

Bacterial infections involving joints and vital organs represent a challenging clinical problem because of the two concurrent therapeutic goals of bacterial eradication and tissue preservation. In the case of septic arthritis, permanent destruction of articular cartilage by intense host inflammation is commonly seen even after successful treatment of bacterial infection. Here, we provide scientific evidence of a novel treatment modality that can protect articular cartilage and enhanced eradication of causative bacteria in septic arthritis.

View Article and Find Full Text PDF

Bulk metallic glasses (BMGs) are a class of amorphous metals that exhibit high strength, ductility paired with wear and corrosion resistance. These properties suggest that they could serve as an alternative to conventional metallic implants that suffer wear and failure. In the present study, we investigated Platinum (Pt)-BMG biocompatibility in bone applications.

View Article and Find Full Text PDF

Naringin is a naturally occurring flavonoid found in plants of the genus that has historically been used in traditional Chinese medical regimens for the treatment of osteoporosis. Naringin modulates signaling through numerous molecular pathways critical to musculoskeletal development, cellular differentiation, and inflammation. Administration of naringin increases expression of bone morphogenetic proteins (BMPs) and activation of the Wnt/β-catenin and extracellular signal-related kinase (Erk) pathways, thereby promoting osteoblastic proliferation and differentiation from stem cell precursors for bone formation.

View Article and Find Full Text PDF

Infection is a devastating complication following an open fracture. We investigated whether local rifampin-loaded hydrogel can combat infection and improve healing in a murine model of methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis. A transverse fracture was made at the tibia midshaft of C57BL/6J mice aged 10-12 weeks and stabilized with an intramedullary pin.

View Article and Find Full Text PDF

Smokers are at a higher risk of delayed union or nonunion after fracture repair. Few specific interventions are available for prevention because the molecular mechanisms that result in these negative sequelae are poorly understood. Murine models that mimic fracture healing in smokers are crucial in further understanding the local cellular and molecular alterations during fracture healing caused by smoking.

View Article and Find Full Text PDF

Bone and joint infections are devastating afflictions. Although medical interventions and advents have improved their care, bone and joint infections still portend dismal outcomes. Indeed, bone and joint infections are associated with extremely high mortality and morbidity rates and, generally, occur secondary to the aggressive pathogen Staphylococcus aureus.

View Article and Find Full Text PDF

Aims: To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant (MRSA) and the antibiotic and detergent susceptibility of MRSA in bone.

Methods: Time-lapse confocal microscopy was used to analyze the interaction of MRSA strain USA300 with primary murine osteoblasts and osteoclasts. The effects of early and delayed antibiotic treatments on intracellular and extracellular bacterial colony formation and cell death were quantified.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a multisystemic disease that afflicts more than 415 million people globally-the incidence and prevalence of T2DM continues to rise. It is well-known that T2DM has detrimental effects on bone quality that increase skeletal fragility, which predisposes subjects to an increased risk of fracture and fracture healing that results in non- or malunion. Diabetics have been found to have perturbations in metabolism, hormone production, and calcium homeostasis-particularly PTH expression-that contribute to the increased risk of fracture and decreased fracture healing.

View Article and Find Full Text PDF

Background: TLRs are some of the actively pursued drug-targets in immune disorders. Owing to a recent surge in the cognizance of TLR structural biology and signalling pathways, numerous therapeutic modulators, ranging from low-molecular-weight organic compounds to polypeptides and nucleic acid agents have been developed.

Methods: A penetratin-conjugated small peptide (TIP3), derived from the core β-sheet of TIRAP, was evaluated in vitro by monitoring the TLR-mediated cytokine induction and quantifying the protein expression using western blot.

View Article and Find Full Text PDF

A mounting evidence exists for the despicable role of the aberrant immune response in the pathogenesis of rheumatoid arthritis (RA), where toll-like receptor 4 (TLR4) can activate synovial fibroblasts that lead to the chronic inflammation and joint destruction, thus making TLR4 a potent drug target in RA. We report that novel TLR4-antagonizing peptide, PIP2, inhibits the induction of inflammatory biomarkers in vitro as well as in vivo. Systemically, PIP2 inhibits the lipopolysaccharide (LPS)-elicited TNF-α, IL-6, and IL-12p40 in a mouse model.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) recognize pathogen/damage-associated molecular patterns and initiate inflammatory signaling cascades. Occasionally, overexpression of TLRs leads to the onset of numerous inflammatory diseases, necessitating the development of selective inhibitors to allow a protective yet balanced immune response. Here, we demonstrate that a novel peptide (TIP1) derived from Toll/interleukin-1 receptor (TIR) domain-containing adapter protein inhibited multiple TLR signaling pathways (MyD88-dependent and MyD88-independent) in murine and human cell lines.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM), and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structural model of TLR4-a widely studied member of the interleukin-1 receptor/TLR superfamily-using homology modeling, protein-protein docking, and molecular dynamics simulations to understand the differential domain organization of TLR4 in a membrane-aqueous environment.

View Article and Find Full Text PDF

Diabetes is a risk factor for acute kidney injury (AKI) and chronic kidney disease (CKD). Diabetic patients are easy to progress to CKD after AKI. Currently, activation of fibrotic signalling including transforming growth factor-β (TGF-β) is recognized as a key mechanism in CKD.

View Article and Find Full Text PDF

Toll-like receptor 2 (TLR2) antagonists are key therapeutic targets because they inhibit several inflammatory diseases caused by surplus TLR2 activation. In this study, we identified two novel nonpeptide TLR2 antagonists, C11 and C13, through pharmacophore-based virtual screening. At 10 μm, the level of interleukin (IL)-8 inhibition by C13 and C11 in human embryonic kidney TLR2 overexpressing cells was comparable to the commercially available TLR2 inhibitor CU-CPT22.

View Article and Find Full Text PDF