Publications by authors named "Hyui Sul Lee"

Complexes [NNN]Ln(AlMe(4))(2) (Ln = Y, La, Nd, Lu) bearing the sterically demanding aryl-substituted triazenido ligand [(Tph)(2)N(3)] (Tph = [2-(2,4,6-iPr(3)C(6)H(2))C(6)H(4)]) can be obtained from homoleptic complexes Ln(AlMe(4))(3) in moderate yields, both via protonolysis with [(Tph)(2)N(3)]H and a salt metathesis reaction pathway utilizing [(Tph)(2)N(3)]K. In the solid state the Y and Lu derivatives are isostructural, with both tetramethylaluminate groups coordinated in an eta(2) fashion, while one of the [AlMe(4)] ligands of the Nd derivative features a distorted eta(2) coordination mode. Due to the high affinity of the triazenido ligand toward the more Lewis-acidic and harder aluminium cation compared to the softer rare-earth metal centres, ligand redistribution is observed in solution and formation of byproduct [(Tph)(2)N(3)]AlMe(2) is prominent.

View Article and Find Full Text PDF

The sigma-bond metathesis reaction between PhSiH(3) and the heteroleptic metal pentafluorophenyl compounds [Dmp(Tph)N(3)MC(6)F(5)(thf)(n)] (Dmp = 2,6-Mes(2)C(6)H(3) with Mes = 2,4,6-Me(3)C(6)H(2); Tph = 2-TripC(6)H(4) with Trip = 2,4,6-(i)Pr(3)C(6)H(2); n = 1, 2; M = Sr, Ba, Eu) supported by sterically crowded, biphenyl- and terphenyl-substituented triazenido ligands afforded the first homoleptic stontium, barium, and europium triazenides [M{N(3)Dmp(Tph)}(2)] {M = Sr (2), Ba (4), Eu (5)}. Crystallization of 2 from an n-heptane/1,2-dimethoxyethane mixture gave the complex [Sr{N(3)Dmp(Tph)}(2)(dme)] (3). All new compounds have been characterized by (1)H and (13)C NMR spectroscopy (not 5), elemental analysis, IR spectroscopy (5 only), and X-ray crystallography.

View Article and Find Full Text PDF

Because of their similar cationic radii, potassium and thallium(I) compounds are usually regarded as closely related. Homologous molecular species containing either K(+) or Tl(+) are very rare, however. We have synthesized potassium and thallium salts MN3RR' derived from the biphenyl- or terphenyl-substituted triazenes Tph2N3H (1a), Dmp(Mph)N3H (1b), Dmp(Tph)N3H (1c), and (Me4Ter)2N3H (1d) (Dmp=2,6-Mes 2C6H3 with Mes=2,4,6-Me3C6H2; Me4Ter=2,6-(3,5-Me2C6H3)2C6H3; Mph=2-MesC6H4; Tph=2-TripC6H4 with Trip=2,4,6-(i)Pr3C6H2).

View Article and Find Full Text PDF

Higher aggregated alkali-metal compounds are usually obtained with increasing radius of the metal. Alkali-metal salts derived from the sterically crowded triazenido ligand Tph2N3H [Tph = C6H3-2,6-(C6H2-2,4,6-iPr3)2] do not obey this principle. Interestingly, these compounds show inverse aggregation behavior in the solid state: the potassium and cesium salts crystallize as discrete monomers in which the cations interact with flanking arene rings of the diaryltriazenido ligands, whereas the lithium derivative is dimeric with a more conventional heteroatom-bridged structure.

View Article and Find Full Text PDF