Ionic polymer-metal composites (IPMCs) have been proposed as biomimetic actuators that are operable at low applied voltages. However, the bending strain and generating force of the IPMC actuators have generally exhibited a trade-off relationship, whereas simultaneous enhancement of both the qualities is required for their practical applications. Herein, a significant improvement in both the strain and force of the IPMC actuators is achieved by a facile approach, exploiting thickness-controlled ion-exchange membranes and nanodispersed metal electrodes.
View Article and Find Full Text PDFOn purpose to develop a polymer actuator with high stability in air-operation as well as large bending displacement, a series of ionic polymer-metal composites (IPMC) was constructed with poly(styrene sulfonate)-grafted fluoropolymers as ionomeric matrix and immidazolium-based ionic liquids (IL) as inner solvent. The prepared IPMC actuators exhibited greatly enhanced bending displacement compared to Nafion-based actuators. The actuators were stable in air-operation, maintaining initial displacement for up to 10(4) cycles or 24 h.
View Article and Find Full Text PDF