Publications by authors named "HyucK Choo"

Article Synopsis
  • Researchers have developed a smartphone-based Raman spectrometer to classify drugs by their chemical components, achieving a high accuracy of 99.0%.
  • This spectrometer utilizes the CMOS image sensor and band pass filters to create a 2D intensity map of Raman spectral data, referred to as a "spectral barcode."
  • The technology allows for differentiation of brand-name drugs and identification of major components in unknown substances, promising advancements in research and commercial applications through a combination of spectroscopy and image recognition techniques.
View Article and Find Full Text PDF

The generation of high-purity localized trions, dynamic exciton-trion interconversion, and their spatial modulation in two-dimensional (2D) semiconductors are building blocks for the realization of trion-based optoelectronic devices. Here, we present a method for the all-optical control of the exciton-to-trion conversion process and its spatial distributions in a MoS monolayer. We induce a nanoscale strain gradient in a 2D crystal transferred on a lateral metal-insulator-metal (MIM) waveguide and exploit propagating surface plasmon polaritons (SPPs) to localize hot electrons.

View Article and Find Full Text PDF

Augmenting contact lenses with sensing capabilities requires incorporating multiple functionalities within a diminutive device. Inspired by multifunctional biophotonic nanostructures of glasswing butterflies, a nanostructured scleral lens with enhanced optical, bactericidal, and sensing capabilities is reported. When used in conjunction with a smartphone-integrated Raman spectrometer, the feasibility of point-of-care applications is demonstrated.

View Article and Find Full Text PDF

Photonic crystal (PhC) phosphor, in which the phosphor material is periodically modulated for an enhancement in color-conversion efficiency via resonant absorption of excitation photons, is a paradigm-shifting structural phosphor platform. Two-dimensional (2D) square-lattice PhC phosphor is currently considered the most advanced platform because of not only its high efficiency, but also its immunity to excitation polarization. In the present study, two major modifications are made to further improve the performance of the 2D PhC phosphor: increasing the refractive index contrast and planarizing the surface.

View Article and Find Full Text PDF

Objective: Given the rapid growth of the wearable healthcare device market, we examined the associations among health-related and technology-related characteristics of using wearable healthcare devices and demonstrated how the associations differ between the US and Korean users.

Methods: Online self-administered surveys were conducted with 4098 participants (3035 in the US and 1063 in Korea) who were recruited through two online survey service providers based on quota sampling. The primary outcome was the use of wearable healthcare devices.

View Article and Find Full Text PDF

Understanding and controlling the nanoscale transport of excitonic quasiparticles in atomically thin two-dimensional (2D) semiconductors are crucial to produce highly efficient nano-excitonic devices. Here, we present a nanogap device to selectively confine excitons or trions of 2D transition metal dichalcogenides at the nanoscale, facilitated by the drift-dominant exciton funneling into the strain-induced local spot. We investigate the spatiospectral characteristics of the funneled excitons in a WSe monolayer (ML) and converted trions in a MoS ML using hyperspectral tip-enhanced photoluminescence imaging with <15-nm spatial resolution.

View Article and Find Full Text PDF

Tunable metasurfaces can change the optical properties of incident light at will such as amplitude, phase, and polarization in a time-dependent fashion. Ultrafast switching speed and the ability for the pixel size reduction of the tunable metasurface can allow various applications such as light detection and ranging, interferometric sensors, and free space optical communications, to name a few. Although there have been successful demonstrations of the wavefront shaping using the tunable metasurface, the implementation of the two-dimensional metasurface pixel array that can be individually addressed in the optical frequency regime still remains challenging.

View Article and Find Full Text PDF

We have demonstrated a compact and efficient metasurface-based spectral imager for use in the near-infrared range. The spectral imager was created by fabricating dielectric multilayer filters directly on top of the CMOS image sensor. The transmission wavelength for each spectral channel was selected by embedding a Si nanopost array of appropriate dimensions within the multilayers on the corresponding pixels, and this greatly simplified the fabrication process by avoiding the variation of the multilayer-film thicknesses.

View Article and Find Full Text PDF

We have demonstrated a tactile-pattern-integrated sensing window for more consistent photoplethysmogram (PPG) measurements. The pattern is composed of two tiny bumps that measure 500μm in diameter and 300μm in height and allow users to position their finger pulps more consistently on the sensing window over different measurement occasions, simply by following their tactile sensation. We experimentally compared the tactile pattern window to a flat window (without any bumps) for 5 test subjects and found that the sensing window with the tactile pattern significantly helped users obtain more consistent PPG signals than the flat window (p < 0.

View Article and Find Full Text PDF

Landau damping has previously been shown to be the dominant nonlocal effect in sub-10nm plasmonic nanostructures, although its effects on the performance of plasmonic nanocavities are still poorly understood. In this work, the effects of Landau damping in sub-10-nm planar plasmonic nanocavities are analyzed theoretically, and it is shown that while Landau damping does not affect the confinement of the cavity modes, it decreases the quality factor 10-fold due to the introduction of extra loss for sub-10nm gap sizes. As compared to purely classical models, this results in a suppression in the Purcell factor by 10 fold, the spontaneous emission rate by almost two orders of magnitude, and the required oscillator strength to achieve strong light-matter coupling by two orders of magnitude as the gap is reduced to ∼0.

View Article and Find Full Text PDF

One critical factor for bolometer sensitivity is efficient electromagnetic heating of thermistor materials, which plasmonic nanogap structures can provide through the electric field enhancement. In this report, using finite element method simulation, electromagnetic heating of nanorod dimer antennas with a nanogap filled with vanadium dioxide (VO) was studied for long-wavelength infrared detection. Because VO is a thermistor material, the electrical resistance between the two dimer ends depends on the dimer's temperature.

View Article and Find Full Text PDF

Spatial light modulators are essential optical elements in applications that require the ability to regulate the amplitude, phase and polarization of light, such as digital holography, optical communications and biomedical imaging. With the push towards miniaturization of optical components, static metasurfaces are used as competent alternatives. These evolved to active metasurfaces in which light-wavefront manipulation can be done in a time-dependent fashion.

View Article and Find Full Text PDF

The demand for essential pixel components with ever-decreasing size and enhanced performance is central to current optoelectronic applications, including imaging, sensing, photovoltaics and communications. The size of the pixels, however, are severely limited by the fundamental constraints of lightwave diffraction. Current development using transmissive filters and planar absorbing layers can shrink the pixel size, yet there are two major issues, optical and electrical crosstalk, that need to be addressed when the pixel dimension approaches wavelength scale.

View Article and Find Full Text PDF

Flexible surface-enhanced Raman scattering (SERS) has received attention as a means to move SERS-based broadband biosensing from bench to bedside. However, traditional flexible periodic nano-arrangements with sharp plasmonic resonances or their random counterparts with spatially varying uncontrollable enhancements are not reliable for practical broadband biosensing. Here, we report bioinspired quasi-(dis)ordered nanostructures presenting a broadband yet tunable application-specific SERS enhancement profile.

View Article and Find Full Text PDF

Enhancement of optical emission on plasmonic nanostructures is intrinsically limited by the distance between the emitter and nanostructure surface, owing to a tightly-confined and exponentially-decaying electromagnetic field. This fundamental limitation prevents efficient application of plasmonic fluorescence enhancement for diversely-sized molecular assemblies. We demonstrate a three-dimensionally-tapered gap plasmon nanocavity that overcomes this fundamental limitation through near-homogeneous yet powerful volumetric confinement of electromagnetic field inside an open-access nanotip.

View Article and Find Full Text PDF

The variation in energy bandgaps of amorphous oxide semiconducting SiZnSnO (a-SZTO) has been investigated by controlling the oxygen partial pressure (O). The systematic change in O during deposition has been used to control the electrical characteristics and energy bandgap of a-SZTO. As O increased, the electrical properties degraded, while the energy bandgap increased systematically.

View Article and Find Full Text PDF

Our understanding of ocular hemodynamics and its role in ophthalmic disease progression remains unclear due to the shortcomings of precise and on-demand biomedical sensing technologies. Here, we report high-resolution in vivo assessment of ocular hemodynamics using a Fabry-Pérot cavity-based micro-optical sensor and a portable optical detector. The designed optical system is capable of measuring both static intraocular pressure and dynamic ocular pulsation profiles in parallel.

View Article and Find Full Text PDF

Aluminum (Al)-based nanoantennae traditionally suffer from weak plasmonic performance in the visible range, necessitating the application of more expensive noble metal substrates for rapidly expanding biosensing opportunities. We introduce a metasurface comprising Al nanoantennae of nanodisks-in-cavities that generate hybrid multipolar lossless plasmonic modes to strongly enhance local electromagnetic fields and increase the coupled emitter's local density of states throughout the visible regime. This results in highly efficient electromagnetic field confinement in visible wavelengths by these nanoantennae, favoring real-world plasmonic applications of Al over other noble metals.

View Article and Find Full Text PDF

Recent studies on metal-insulator-metal-based plasmonic antennas have shown that emitters could couple with higher-order gap-plasmon modes in sub-10-nm gaps to overcome quenching. However, these gaps are often physically inaccessible for functionalization and are not scalably manufacturable. Here, using a simple biomimetic batch-fabrication, a plasmonic metasurface is created consisting of closely-coupled nanodisks and nanoholes in a metal-insulator-metal arrangement.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease, and its management focuses on monitoring and lowering a patient's glucose level to prevent further complications. By tracking the glucose-induced shift in the surface-enhanced Raman-scattering (SERS) emission of mercaptophenylboronic acid (MPBA), we have demonstrated fast and continuous glucose sensing in the physiologically relevant range from 0.1 to 30 mM and verified the underlying mechanism using numerical simulations.

View Article and Find Full Text PDF

We have demonstrated metal-on-silicon thermocouples with a noticeably high Seebeck coefficient and an excellent temperature-sensing resolution. Fabrication of the thermocouples involved only simple photolithography and metal-liftoff procedures on a silicon substrate. The experimentally measured Seebeck coefficient of our thermocouple was 9.

View Article and Find Full Text PDF

Implantable electronics in soft and flexible forms can reduce undesired outcomes such as irritations and chronic damages to surrounding biological tissues due to the improved mechanical compatibility with soft tissues. However, the same mechanical flexibility also makes it difficult to insert such implants through the skin because of reduced stiffness. In this paper, a flexible-device injector that enables the subcutaneous implantation of flexible medical electronics is reported.

View Article and Find Full Text PDF

Numerous living organisms possess biophotonic nanostructures that provide colouration and other diverse functions for survival. While such structures have been actively studied and replicated in the laboratory, it remains unclear whether they can be used for biomedical applications. Here, we show a transparent photonic nanostructure inspired by the longtail glasswing butterfly (Chorinea faunus) and demonstrate its use in intraocular pressure (IOP) sensors in vivo.

View Article and Find Full Text PDF