Background: Polycystic kidney disease (PKD) involves renal cysts arising from proliferating tubular cells. Autophagy has been recently suggested as a potential therapeutic target in PKD, and mammalian target of rapamycin (mTOR) is a key negative regulator of autophagy. However, the effect of autophagy regulation on cystogenesis has not been elucidated in PKD mice.
View Article and Find Full Text PDFAutophagy is a catabolic process required for maintaining intracellular energy homeostasis. It eliminates harmful proteins and recycles functional macromolecules back into the cell via cargo breakdown. Autophagy is generally suppressed under fed conditions and induced by serum starvation; therefore, it is considered to be a nutrient-sensing mechanism.
View Article and Find Full Text PDFAutosomal polycystic kidney disease (ADPKD) is a common inherited renal disease characterized by the development of numerous fluid-filled cysts in both kidneys. We investigated miRNA-mediated regulatory systems and networks that play an important role during cystogenesis through integrative analysis of miRNA- and RNA-seq using two ADPKD mouse models (conditional Pkd1- or Pkd2-deficient mice), at three different time points (P1, P3, and P7). At each time point, we identified 13 differentially expressed miRNAs (DEmiRs) and their potential targets in agreement with cyst progression in both mouse models.
View Article and Find Full Text PDFDiverse signaling pathways have been reported to be associated with polycystic kidney disease (PKD). Cell proliferation is widely known to be an important pathway related to this disease. However, studies on the interactions of inflammation and fibrosis with polycystic kidney disease have been limited.
View Article and Find Full Text PDFAutosomal polycystic kidney disease (ADPKD) is a highly prevalent genetic renal disorder in which epithelial-lining fluid-filled cysts appear in kidneys. It is accompanied by hyperactivation of cell proliferation, interstitial inflammation, and fibrosis around the cyst lining cells, finally reaching end-stage renal disease. Previously, we found high expression of ligands stimulating the receptor for advanced glycation end products (RAGE) in ADPKD mice.
View Article and Find Full Text PDF