Publications by authors named "Hyowon Han"

Electrolytic ablation (EA) is a burgeoning treatment for solid tumors, in which electrical energy catalyzes a chemical reaction to generate reactive species that can eradicate cancer cells. However, the application of this technique has been constrained owing to the limited spatial effectiveness and complexity of the electrode designs. Therefore, the incorporation of nanotechnology into EA is anticipated to be a significant improvement.

View Article and Find Full Text PDF

Phototherapies, such as photothermal therapy (PTT) and photodynamic therapy (PDT), combined with novel all-in-one light-responsive nanocomposites have recently emerged as new therapeutic modalities for the treatment of cancer. Herein, we developed novel all-in-one triphenylphosphonium-functionalized gold nanorod/zinc oxide core-shell nanocomposites (CTPP-GNR@ZnO) for mitochondrial-targeted PTT/PDT owing to their good biocompatibility, tunable and high optical absorption, photothermal conversion efficiency, highest reactive oxygen species (ROS) generation, and high mitochondrial-targeting capability. Under laser irradiation of 780 nm, the CTPP-GNR@ZnO core-shell nanocomposites effectively produced heat in addition to generating ROS to induce cell death, implying a synergistic effect of mild PTT and PDT in combating cancer.

View Article and Find Full Text PDF

Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer patients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer nanotheranostics. Herein, we constructed a new type of mesoporous silica-layered gold nanorod core@silver shell nanostructures loaded with methylene blue (GNR@Ag@mSiO-MB) as a multifunctional nanotheranostic agent for intracellular SERS imaging and phototherapy.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) have potential use in regerenrative medicine for disease modeling and drug screening studies. The AAVS1 locus has been validated as a stable transgene expression and safe genomic location. Therefore, we inserted the enhanced green fluorescent protein (EGFP) gene into the AAVS1 locus of hiPSCs, using CRISPR/Cas9 genome editing.

View Article and Find Full Text PDF

Optical encryption using coloration and photoluminescent (PL) materials can provide highly secure data protection with direct and intuitive identification of encrypted information. Encryption capable of independently controlling wavelength-tunable coloration as well as variable light intensity PL is not adequately demonstrated yet. Herein, a rewritable PL and structural color (SC) display suitable for dual-responsive optical encryption developed with a stimuli-responsive SC of a block copolymer (BCP) photonic crystal (PC) with alternating in-plane lamellae, of which a variety of 3D and 2D perovskite nanocrystals is preferentially self-assembled with characteristic PL, is presented.

View Article and Find Full Text PDF

Optical encryption technologies based on room-temperature light-emitting materials are of considerable interest. Herein, we present three-dimensional (3D) printable dual-light-emitting materials for high-performance optical pattern encryption. These are based on fluorescent perovskite nanocrystals (NCs) embedded in metal-organic frameworks (MOFs) designed for phosphorescent host-guest interactions.

View Article and Find Full Text PDF

Despite the remarkable advances made in the development of 2D perovskites suitable for various high-performance devices, the development of sub-30 nm nanopatterns of 2D perovskites with anisotropic photoelectronic properties remains challenging. Herein, a simple but robust route for fabricating sub-30 nm 1D nanopatterns of 2D perovskites over a large area is presented. This method is based on nanoimprinting a thin precursor film of a 2D perovskite with a topographically pre-patterned hard poly(dimethylsiloxane) mold replicated from a block copolymer nanopattern consisting of guided self-assembled monolayered in-plane cylinders.

View Article and Find Full Text PDF

Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer treatment have recently garnered significant attention, owing to their effective ablation of cancer cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we designed and developed calcium ion-doped magnesium ferrite nanoparticles (Ca-doped MgFeO NPs) as novel and effective PT therapeutic materials for cancer treatment, owing to their good biocompatibility, biosafety, high near-infrared (NIR) absorption, easy localization, short treatment period, remote controllability, high efficiency, and high specificity. The studied Ca-doped MgFeO NPs exhibited a uniform spherical morphology with particle sizes of 14.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new type of moisture-driven energy generator (MEG) that efficiently generates electricity using humidity, without needing a separate water source.
  • The device features a bilayer design with a specially treated MXene aerogel and a durable PAM hydrogel, enabling high electricity output across a wide humidity range (20% to 95%).
  • This innovative MEG can power commercial electronics in various outdoor settings and also functions as a self-powered sensor that can detect finger bending and facial expressions.
View Article and Find Full Text PDF

Photo-nanotheranostics integrates near-infrared (NIR) light-triggered diagnostics and therapeutics, which are combined into a novel all-in-one phototheranostic nanomaterial that holds great promise for the early detection and precise treatment of cancer. In this study, we developed methylene blue-loaded mesoporous silica-coated gold nanorods on graphene oxide (MB-GNR@mSiO-GO) as an all-in-one photo-nanotheranostic agent for intracellular surface-enhanced Raman scattering (SERS) imaging-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for cancer. Amine functionalization of the MB-GNR@mSiO surfaces was performed using 3-aminopropyltriethoxysilane (APTES), which was well anchored on the carboxyl groups of graphene oxide (GO) nanosheets uniformly, and showed a remarkably higher photothermal conversion efficiency (48.

View Article and Find Full Text PDF

Despite the many advanced strategies that are available, rapid gene mutation in multidrug-resistant bacterial infections remains a major challenge. Combining new therapeutic strategies such as chemo-photothermal therapy (PTT) with high antibacterial efficiency against drug-resistant Listeria monocytogenes (LM) is urgently needed. Here, we report synergistic chemo-PTT against drug-resistant LM based on antibody-conjugated and streptomycin-chitosan oligosaccharide-modified gold nanoshells (anti-STR-CO-GNSs) as all-in-one nanotheranostic agents for the first time, which was used for accurate antibacterial applications.

View Article and Find Full Text PDF

The development of electrodes with high conductivity, optical transparency, and reliable mechanical flexibility and stability is important for numerous solution-processed photoelectronic applications. Although transparent TiCT MXene electrodes with high conductivity are promising, their suitability for displays remains limited because of the high sheet resistance, which is caused by undesirable flake junctions and surface roughness. Herein, a flexible and transparent electrode has been fabricated that is suitable for a full-solution-processed quantum dot light-emitting diode (QLED).

View Article and Find Full Text PDF
Article Synopsis
  • Macrophages play a crucial role in maintaining body functions and are being explored for treating inflammation and cancer through cell-based therapies.
  • Human pluripotent stem cell (hPSC)-derived macrophages are a potential alternative to primary macrophages, but their biological consistency is still uncertain.
  • This study assesses the quality of iMACs (hPSC-derived macrophages) using single-cell RNA sequencing, highlighting its importance in ensuring the reliability of cell-based therapies.
View Article and Find Full Text PDF

Photothermal (PT)-enhanced Fenton-based chemodynamic therapy (CDT) has attracted a significant amount of research attention over the last five years as a highly effective, safe, and tumor-specific nanomedicine-based therapy. CDT is a new emerging nanocatalyst-based therapeutic strategy for the treatment of tumors via the Fenton reaction or Fenton-like reaction, which has got fast progress in recent years because of its high specificity and activation by endogenous substances. A variety of multifunctional nanomaterials such as metal-, metal oxide-, and metal-sulfide-based nanocatalysts have been designed and constructed to trigger the Fenton or Fenton-like reaction within the tumor microenvironment (TME) to generate highly cytotoxic hydroxyl radicals (•OH), which is highly efficient for the killing of tumor cells.

View Article and Find Full Text PDF

Transition metal dichalcogenide (TMD) nanosheets exfoliated in the liquid phase are of significant interest owing to their potential for scalable and flexible photoelectronic applications. Although various dispersants such as surfactants, oligomers, and polymers are used to obtain highly exfoliated TMD nanosheets, most of them are electrically insulating and need to be removed; otherwise, the photoelectric properties of the TMD nanosheets degrade. Here, inorganic halide perovskite nanocrystals (NCs) of CsPbX  (X = Cl, Br, or I) are presented as non-destructive dispersants capable of dispersing TMD nanosheets in the liquid phase and enhancing the photodetection properties of the nanosheets, thus eliminating the need to remove the dispersant.

View Article and Find Full Text PDF

MXenes (TiCT) are two-dimensional transition-metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes with high environmental stability suitable for various flexible organic electronic devices have rarely been demonstrated. By laminating a thin polymer film onto a solution-processed MXene layer to protect the MXene film from harsh environmental conditions, we present transparent and flexible MXene electronic devices.

View Article and Find Full Text PDF

The encapsulation of lead halide perovskite nanocrystals (PNCs) with an inert protective layer against moisture and the environment is a promising approach to overcome hinderances for their practical use in optoelectronic and biomedical applications. Herein, a facile method for synthesizing highly luminescent and biocompatible CsPbBr@SiO core-shell PNCs with a controlled SiO thickness, which are suitable for both cell imaging and drug delivery, is reported. The synthesized CsPbBr@SiO core-shell PNCs exhibit bright green emission at 518 nm upon excitation of 374 nm.

View Article and Find Full Text PDF

Pluripotent stem cell-derived cerebral organoids have the potential to recapitulate the pathophysiology of human brain tissue, constituting a valuable resource for modelling brain disorders, including infectious diseases. , an intracellular protozoan parasite, infects most warm-blooded animals, including humans, causing toxoplasmosis. In immunodeficient patients and pregnant women, infection often results in severe central nervous system disease and fetal miscarriage.

View Article and Find Full Text PDF

Tremendous efforts have been devoted to developing thin film halide perovskites (HPs) for use in high-performance photoelectronic devices, including solar cells, displays, and photodetectors. Furthermore, structured HPs with periodic micro- or nanopatterns have recently attracted significant interest due to their potential to not only improve the efficiency of an individual device via the controlled arrangement of HP crystals into a confined geometry, but also to technologically pixelate the device into arrays suitable for future commercialization. However, micro- or nanopatterning of HPs is not usually compatible with conventional photolithography, which is detrimental to ionic HPs and requires special techniques.

View Article and Find Full Text PDF

Toll-like receptor 7 (TLR7) is a member of the toll-like receptor (TLR) family that is essential in the innate immune system. In this study, we established a heterozygous TLR7 knockout H9 cell line using CRISPR/Cas9. TLR7 knockout H9 cells maintained their pluripotency and exhibited the ability to differentiate into the three germ layers without any karyotype abnormalities.

View Article and Find Full Text PDF

Although human induced pluripotent stem cell (hiPSC) lines are karyotypically normal, they retain the potential for mutation in the genome. Accordingly, intensive and relevant quality controls for clinical-grade hiPSCs remain imperative. As a conceptual approach, we performed RNA-seq-based broad-range genetic quality tests on GMP-compliant human leucocyte antigen (HLA)-homozygous hiPSCs and their derivatives under postdistribution conditions to investigate whether sequencing data could provide a basis for future quality control.

View Article and Find Full Text PDF

The efficient and reproducible derivation and maturation of multipotent hematopoietic progenitors from human pluripotent stem cells (hPSCs) requires the recapitulation of appropriate developmental stages and the microenvironment. Here, using serum-, xeno-, and feeder-free stepwise hematopoietic induction protocols, we showed that short-term and high-concentration treatment of hPSCs with bone morphogenetic protein 4 (BMP4) strongly promoted early mesoderm induction followed by increased hematopoietic commitment. This method reduced variations in hematopoietic differentiation among hPSC lines maintained under chemically defined Essential 8 medium compared to those maintained under less-defined mTeSR medium.

View Article and Find Full Text PDF

Despite the great interest in inorganic halide perovskites (IHPs) for a variety of photoelectronic applications, environmentally robust nanopatterns of IHPs have hardly been developed mainly owing to the uncontrollable rapid crystallization or temperature and humidity sensitive polymorphs. Herein, we present a facile route for fabricating environment- and phase-stable IHP nanopatterns over large areas. Our method is based on nanoimprinting of a soft and moldable IHP adduct.

View Article and Find Full Text PDF

A major limitation in anti-tuberculosis drug screening is the lack of reliable and scalable models for homogeneous human primary macrophage cells of non-cancer origin. Here we report a modified protocol for generating homogeneous populations of macrophage-like cells from human embryonic stem cells. The induced macrophages, referred to as iMACs, presented similar transcriptomic profiles and characteristic immunological features of classical macrophages and were permissive to viral and bacterial infection, in particular Mycobacterium tuberculosis (Mtb).

View Article and Find Full Text PDF

The Toll like Receptor (TLR) family plays an essential role in pathogen recognition and innate immunity activation. TLR8, an endosomal receptor, can recognize single-stranded RNA viruses, such as influenza virus, Sendai virus, Coxsackie B virus, HIV, and HCV. TLR8 binding to the viral RNA recruits MyD88 and leads to activation of the transcription factor NF-kB and antiviral response.

View Article and Find Full Text PDF