Advances in computational methods and medical imaging techniques have enabled accurate simulations of subject-specific blood flows at the level of individual blood cell and in complex arterial networks. While in the past, we were limited to simulations with one arterial bifurcation, the current state-of-the-art is simulations of arterial networks consisting of hundreds of arteries. In this paper, we review the advances in methods for vascular flow simulations in large arterial trees.
View Article and Find Full Text PDFA growing number of cases of rupture at an infundibulum, progression of infundibulum to a frank aneurysm, and subarachnoid hemorrhage (SAH) in the posterior communicating artery (PCoA) have been reported. Using patient-specific geometric models of the supraclinoid internal carotid artery (ICA) with PCoA infundibulum or aneurysm, high-resolution computational fluid dynamics simulations were performed by solving the Navier-Stokes equations with a spectral/hp element method. Simulation results show that the flow impinges at the distal wall of infundibulum near the outside of the ICA bend and creates a region of higher pressure (4-5 mmHg) surrounded by a band of a high wall shear stress (WSS) (20-30 N/m(2) on average).
View Article and Find Full Text PDF