Publications by authors named "Hyoungseon Choi"

Blood glucose sensing is very important for diabetic management. It is shifting towards a continuous glucose monitoring because such a system can alleviate patient suffering and provide a large number of glucose measurements. Here, we proposed a novel approach for the development of durable and accurate enzymatic continuous glucose monitoring system (CGMS).

View Article and Find Full Text PDF

Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is now a widely-used modality for glioblastoma (GBM) treatment. However, intratumoral heterogeneity of fluorescence intensity may reflect different onco-metabolic programs. Here, we investigated the metabolic mechanism underlying the heterogeneity of 5-ALA fluorescence in GBM.

View Article and Find Full Text PDF

Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations.

View Article and Find Full Text PDF

Detection of pathogenic bacteria requires a sensitive, accurate, rapid, and portable device. Given that lethal microbes are of various sizes, bacterial sensors based on DC (direct current) impedance on chips should be equipped with channels with commensurate cross sections. When it comes to counting and interrogation of individual bacteria on a microfluidic chip, very narrow channels are required, which are neither easy nor cost-effective to fabricate.

View Article and Find Full Text PDF

Quantification of circulating tumor cells (CTCs) in blood samples is believed to provide valuable evidence of cancer progression, cancer activity status, response to therapy in patients with metastatic cancer, and possible cancer diagnosis. Recently, a number of researchers reported that CTCs tend to lose their epithelial cell adhesion molecule (EpCAM) by an epithelial-mesenchymal transition (EMT). As such, label-free CTC detection methods are attracting worldwide attention.

View Article and Find Full Text PDF